16.11.2012 Views

ANSYS Mechanical Linear and Nonlinear ... - web page for staff

ANSYS Mechanical Linear and Nonlinear ... - web page for staff

ANSYS Mechanical Linear and Nonlinear ... - web page for staff

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Customer Training Material<br />

LLecture t 2<br />

Modal Analysis y<br />

<strong>ANSYS</strong> <strong>Mechanical</strong><br />

<strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong><br />

Dynamics<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-1<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Modal Analysis<br />

Topics covered:<br />

A. Define modal analysis <strong>and</strong> its purpose.<br />

Customer Training Material<br />

B. Discuss associated concepts, terminology, <strong>and</strong> mode extraction<br />

methods methods.<br />

C. Learn how to do a modal analysis in Workbench.<br />

D. Work on one or two modal analysis exercises.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-2<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Description & Purpose<br />

Customer Training Material<br />

• A modal analysis is a technique used to determine the vibration<br />

characteristics of structures:<br />

– natural frequencies<br />

• at what frequencies the structure would tend to naturally vibrate<br />

– mode shapes<br />

• in what shape the structure would tend to vibrate at each frequency<br />

– mode participation factors<br />

• the amount of mass that participates in a given direction <strong>for</strong> each mode<br />

• MMost t ffundamental d t l of f all ll the th dynamic d i analysis l i types. t<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-3<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Description & Purpose<br />

Customer Training Material<br />

Benefits of modal analysis<br />

• Allows the design to avoid resonant vibrations or to vibrate at a<br />

specified frequency (speaker box, <strong>for</strong> example).<br />

• Gives engineers an idea of how the design will respond to different<br />

types of dynamic loads.<br />

• Helps p in calculating g solution controls (time ( steps, p , etc.) ) <strong>for</strong> other<br />

dynamic analyses.<br />

Recommendation: Because a structure’s vibration characteristics<br />

determine how it responds to any type of dynamic load, it is generally<br />

recommended to per<strong>for</strong>m a modal analysis first be<strong>for</strong>e trying any other<br />

dynamic analysis.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-4<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Terminology<br />

• A “mode” refers to the pair of one<br />

natural frequency <strong>and</strong><br />

corresponding mode shape.<br />

– A structure can have any number of<br />

modes, up to the number of DOF in<br />

the model.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-5<br />

Customer Training Material<br />

mode 1<br />

← {φ} 1<br />

f f1 = 109 Hz<br />

mode 2<br />

← {φ} 2<br />

f 2 = 202 Hz<br />

mode 3<br />

← {φ} 3<br />

f 3 = 249 Hz<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Assumptions & Restrictions<br />

• The structure is linear (i.e. constant stiffness <strong>and</strong> mass).<br />

Customer Training Material<br />

• There is no damping.<br />

– Damped eigensolvers (MODOPT,DAMP or MODOPT,QRDAMP) may be<br />

accessed using Comm<strong>and</strong>s Objects, but will not be covered here.<br />

• The structure has no time varying <strong>for</strong>ces, displacements, pressures,<br />

or temperatures applied (free vibration).<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-6<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Development<br />

• Start with the linear general equation of motion:<br />

[ M ]{ ]{ u u&<br />

& } + [ C C]{<br />

]{ u u&<br />

} + [ K]{<br />

]{ u } = { F }<br />

• Assume free vibrations, <strong>and</strong> ignore damping:<br />

• Assume harmonic motion:<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

} 0<br />

} 0<br />

[ M ]{} u&<br />

& + [ C]<br />

{} u&<br />

+ [ K ]{} u = { F}<br />

[ M ]{ ]{ u u&<br />

& } + [ K ]{ ]{ u } = { 0 }<br />

{ } { } ( )<br />

{} {} ( )<br />

{ } { } ( )<br />

i i<br />

i i<br />

u = φ i sin ωit<br />

+ θi<br />

u&<br />

= ω φ cos ω t + θ<br />

2 { u& & } = −ω<br />

{ φ}<br />

sin ( ω t + θ )<br />

i<br />

i<br />

L02-7<br />

i<br />

i<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Development<br />

• Substitute <strong>and</strong> simplify<br />

−ω<br />

2<br />

i<br />

[ M ]{ ]{ u u&<br />

& } + [ K ]{ ]{ u } = { 0 }<br />

[ M ]{} φ i sin ( ωit<br />

+ θi<br />

) + [ K ]{} φ i sin ( ωit<br />

+ θi<br />

) = {} 0<br />

( 2<br />

ωω<br />

[ M ] + [ K ] ){ ){ φφ<br />

} = { 0 }<br />

− i<br />

i<br />

Customer Training Material<br />

• This equality is satisfied if {φ} i = 0 (trivial, implies no vibration) or if<br />

( [ ] 2<br />

K ] −ωω [ M ] ) = { 0 }<br />

det =<br />

K i<br />

• This is an eigenvalue problem which may be solved <strong>for</strong> up to n<br />

eigenvalues eigenvalues, ω 2<br />

i , <strong>and</strong> n eigenvectors eigenvectors, {φ}i {φ} i, where n is the number of<br />

DOF.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-8<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Extraction & Normalization<br />

• Note that the equation<br />

( [ ] 2<br />

−ωω [ M ] ) = { 0 }<br />

det M<br />

K i<br />

has one more unknown than equations; there<strong>for</strong>e, an additional<br />

equation is needed to find a solution. solution<br />

– The addition equation is provided by mode shape normalization.<br />

• Mode shapes can be normalized either to the mass matrix<br />

{ } T [ M ]{ φ}<br />

= 1<br />

φ<br />

i<br />

i<br />

Customer Training Material<br />

or to unity, where the largest component of the vector {φ} i is set to 1.<br />

• Workbench displays results normalized to the mass matrix.<br />

• Because of this normalization, only the shape of the DOF solution<br />

has real meaning.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-9<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Eigenvalues & Eigenvectors<br />

• The square roots of the eigenvalues<br />

are ω i, the structure’s natural<br />

circular frequencies (rad/s).<br />

• Natural frequencies fi can then<br />

calculated as f fi = ω ωi/2π /2π (cycles/s) (cycles/s).<br />

– It is the natural frequencies, f i in Hz,<br />

that are input by the user <strong>and</strong> output<br />

by Workbench.<br />

• The eigenvectors {φ} i represent the<br />

mode d shapes, h ii.e. th the shape h<br />

assumed by the structure when<br />

vibrating at frequency fi. <strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-10<br />

Customer Training Material<br />

mode 1<br />

← {φ} 1<br />

f f1 = 109 Hz<br />

mode 2<br />

← {φ} 2<br />

f 2 = 202 Hz<br />

mode 3<br />

← {φ} 3<br />

f 3 = 249 Hz<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Equation Solvers<br />

( [ ] 2<br />

−ω [ M ] ) = { 0}<br />

• The equation<br />

det K i<br />

can be solved using one of two solvers available in Workbench<br />

<strong>Mechanical</strong>:<br />

– Direct (Block Lanczos)<br />

Customer Training Material<br />

• To find many modes (about 40+) of large models.<br />

• Per<strong>for</strong>ms well when the model consists of shells or a combination of shells<br />

<strong>and</strong> solids.<br />

• Uses the Lanczos algorithm where the Lanczos recursion is per<strong>for</strong>med with a<br />

block of vectors. Uses the sparse matrix solver.<br />

– Iterative (PCG Lanczos)<br />

• To find few modes (up to about 100) of very large models (500,000+ DOFs).<br />

• Per<strong>for</strong>ms well when the lowest modes are sought <strong>for</strong> models that are<br />

ddominated i t d by b well-shaped ll h d 3-D 3 D solid lid elements. l t<br />

• Uses the Lanczos algorithm, combined with the PCG iterative solver.<br />

• In most cases cases, the Program Controlled option selects the optimal<br />

solver automatically.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-11<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Participation Factors (Solution In<strong>for</strong>mation)<br />

• The participation factors are calculated by<br />

γ =<br />

i<br />

T { φ}<br />

[ M ]{ D}<br />

i<br />

Customer Training Material<br />

where {D} is an assumed unit displacement spectrum in each of the global<br />

Cartesian directions <strong>and</strong> rotation about each of these axes.<br />

– This measures the amount of mass moving in each direction <strong>for</strong> each mode.<br />

– Th The “Ratio” “R ti ” iis simply i l another th list li t of f participation ti i ti factors, f t normalized li d to t the th<br />

largest.<br />

• The concept of participation factors will be important in later chapters.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-12<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Participation Factors (Solution In<strong>for</strong>mation)<br />

Customer Training Material<br />

• A high value in a direction indicates that the mode will be excited by <strong>for</strong>ces in<br />

that direction.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

mode 1 mode 3 mode 5<br />

L02-13<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Effective Mass (Solution In<strong>for</strong>mation)<br />

• Also printed out is the effective mass.<br />

2<br />

γ i<br />

2<br />

T<br />

M eff , i = = γγ<br />

i , if { φφ<br />

} i [ M ]{ ]{ φφ<br />

} i = 1<br />

T { φ } [ M ]{ ]{ φ }<br />

i<br />

i<br />

Customer Training Material<br />

• Ideally, the sum of the effective masses in each direction should equal total<br />

mass of structure structure, but will depend on the number of modes extracted. extracted<br />

• The ratio of effective mass to total mass can be useful <strong>for</strong> determining<br />

whether or not a sufficient number of modes have been extracted.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-14<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Contact Regions<br />

Customer Training Material<br />

• Contact regions are available in modal analysis; however, since this<br />

is a purely linear analysis, contact behavior will differ <strong>for</strong> the<br />

nonlinear contact types, as shown below:<br />

Contact Type Static Analysis<br />

<strong>Linear</strong> Dynamic Analysis<br />

Initially Touching Inside Pinball Region<br />

Outside Pinball<br />

Region g<br />

Bonded Bonded Bonded Bonded Free<br />

No Separation No Separation No Separation No Separation Free<br />

Rough Rough Bonded Free Free<br />

Frictionless Frictionless No Separation Free Free<br />

Frictional Frictional<br />

μ = 0, No Separation<br />

μ > 0, Bonded<br />

Free Free<br />

• Contact behavior will reduce to its linear counterparts.<br />

– It is generally recommended, however, not to use a nonlinear contact<br />

type in a linear-dynamic analysis<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-15<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Unconstrained Systems<br />

Customer Training Material<br />

• An unconstrained system is one that has no constraints or supports<br />

<strong>and</strong> can move as a rigid body in at least one direction.<br />

– Rigid-body motion can be considered to be a mode of oscillation with<br />

zero frequency.<br />

– In practice, these modes may not have a frequency of exactly zero.<br />

“rigid-body”<br />

or<br />

“zero” zero modes<br />

• Note that a well-connected system can have at most six rigid-body<br />

modes.<br />

– Obt Obtaining i i more than th six i rigid-body i id b d modes d may indicate i di t that th t assemblies bli<br />

are not well connected.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-16<br />

Release 13.0<br />

March 2011


Customer Training Material<br />

MModal d l<br />

Prestress Effects<br />

<strong>ANSYS</strong> <strong>Mechanical</strong><br />

<strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong><br />

Dynamics<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-17<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Prestress Effects<br />

Customer Training Material<br />

• A prestressed modal analysis can be used to calculate the<br />

frequencies <strong>and</strong> mode shapes of a prestressed structure, such as a<br />

spinning turbine blade.<br />

– The prestress influences the stiffness of the structure through the stressstiffening<br />

matrix contribution.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-18<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Prestress Effects<br />

Customer Training Material<br />

• In free vibration with prestress analyses, two solutions are required.<br />

– A linear static analysis is initially per<strong>for</strong>med:<br />

[ K K]{<br />

]{ u } = { F } → [ σ ]<br />

– Based on the stress state [σ] from the static analysis, a stress stiffness<br />

matrix [S] is calculated (see Theory Reference <strong>for</strong> details):<br />

[ σ ] → [ S]<br />

– The free vibration with pre-stress analysis is then solved, including the<br />

[S] term:<br />

( 2 [ K + S ] −ω<br />

[ M ] ){ ){ φ } = { 0 }<br />

S K φ ω<br />

+ i i M<br />

• Note that the prestress only affects the stiffness of the system.<br />

– ie i.e. the static prestress will not be added to the modal stress<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-19<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Prestress Effects<br />

Customer Training Material<br />

• <strong>Mechanical</strong> employs the new MAPDL linear perturbation technique<br />

<strong>for</strong> all prestressed eigenvalue analysis<br />

• <strong>Linear</strong> perturbation supports<br />

– Large deflection, nonlinear pre-stress<br />

– Prestressed modal from any y restart ppoint<br />

– H<strong>and</strong>ling true contact status from the static analysis<br />

– Cyclic symmetry<br />

[K T [K T<br />

i ]<br />

• Any time point from a static or<br />

transient structural analysis<br />

can be perturbed. p<br />

• Uses global tangent stiffness<br />

matrix [K i T ] from the time point.<br />

• Restart files must be available.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-20<br />

t i<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Prestress Effects<br />

• Tangent Stiffness matrix<br />

K = K + K +<br />

T<br />

i<br />

+<br />

Mat<br />

i<br />

SpinSoftening<br />

i<br />

Contact<br />

i<br />

K +<br />

• Material Stiffness [K i Mat ]<br />

K<br />

K<br />

LoadStiffness<br />

i<br />

StressStiffness<br />

i<br />

[K i T ]<br />

Customer Training Material<br />

– For nonlinear materials, only the linear portion is used<br />

– For hyperelastic materials, the tangent material properties at the point of restart<br />

are used<br />

• Stress Stiffening [K i StressStiffness ] / Spin softening [Ki SpinSoftening ]<br />

– Effects included automatically in large deflection analyses<br />

• Contact stiffness [K i Contact ]<br />

– Contact behavior can be changed prior to the modal analysis<br />

– (more on this later)<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-21<br />

t i<br />

Release 13.0<br />

March 2011


Customer Training Material<br />

MModal d l<br />

Procedure<br />

<strong>ANSYS</strong> <strong>Mechanical</strong><br />

<strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong><br />

Dynamics<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-22<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• Drop a Modal (<strong>ANSYS</strong>) system into the project schematic.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-23<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• Create new geometry, or link to<br />

existing geometry.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-24<br />

Customer Training Material<br />

• Edit the Model cell to bring up the<br />

<strong>Mechanical</strong> application.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Preprocessing<br />

• Verify materials, connections, <strong>and</strong> mesh settings.<br />

– This was covered in Workbench <strong>Mechanical</strong> Intro.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-25<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Preprocessing<br />

• Optional: Specify “Cyclic Region”<br />

– Matched mesh will be created at the low-high regions<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-26<br />

Customer Training Material<br />

Select Harmonic<br />

Indices of interest in<br />

Analysis Settings<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Preprocessing<br />

• Add supports to the model.<br />

– Displacement constrains must have a magnitude of zero.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-27<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Solution Settings<br />

• Choose the number of modes to<br />

extract.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-28<br />

Customer Training Material<br />

• If needed, upper <strong>and</strong> lower bounds<br />

on frequency may be specified to<br />

extract the modes within a specified<br />

range.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Solution Settings<br />

• If the Program-Controlled solver<br />

selection is not appropriate, the<br />

solver type can be changed to<br />

either Direct or Iterative.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-29<br />

Customer Training Material<br />

• Stress <strong>and</strong> strain results may be<br />

turned on under Output Controls.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Postprocessing<br />

• Total-de<strong>for</strong>mation results may be<br />

quickly inserted by highlighting<br />

multiple rows in the tabular view or<br />

histogram view. view<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-30<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Postprocessing<br />

Customer Training Material<br />

• If stress/strain were requested, these results may also be access from the<br />

Solution Toolbar.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-31<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Postprocessing<br />

Customer Training Material<br />

• If cyclic symmetry was activated, results will be automatically exp<strong>and</strong>ed.<br />

Cyclic Expansion<br />

Harmonic<br />

Index<br />

Control<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

Interactive Frequency-Spectrum Display<br />

L02-32<br />

Modes listed<br />

by Harmonic<br />

Indices<br />

Release 13.0<br />

March 2011


Customer Training Material<br />

MModal d l<br />

Prestressed Procedure<br />

<strong>ANSYS</strong> <strong>Mechanical</strong><br />

<strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong><br />

Dynamics<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-33<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• The procedure to do a prestressed<br />

modal analysis is essentially the<br />

same as a regular modal analysis,<br />

except that you first need to<br />

prestress the structure by doing a<br />

static analysis.<br />

• The static analysis results in a<br />

stressed structure, which is used as<br />

the initial condition <strong>for</strong> the modal<br />

analysis. l i<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-34<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• Drop a Static Structural (<strong>ANSYS</strong>) system into the project schematic.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-35<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• Drop a Modal (<strong>ANSYS</strong>) system onto<br />

the Solution cell of the Modal<br />

system.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-36<br />

Customer Training Material<br />

• Note the circular-ended connector,<br />

indicating a data transfer from the<br />

Static to the Modal analysis.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Procedure<br />

• Create new geometry, or link to<br />

existing geometry.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-37<br />

Customer Training Material<br />

• Edit the Model cell to bring up the<br />

<strong>Mechanical</strong> application.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Static: Preprocessing<br />

Customer Training Material<br />

• In the Static Structural system, insert the loads <strong>and</strong> supports that will cause<br />

the prestressed-state to occur.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-38<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Preprocessing<br />

• Optional: Specify “Cyclic Region”<br />

– Matched mesh will be created at the low-high regions<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-39<br />

Customer Training Material<br />

Select Harmonic<br />

Indices of interest in<br />

Analysis Settings<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Static: Analysis Settings<br />

Customer Training Material<br />

• Setup restart controls of parent static structural analysis according<br />

to requirements.<br />

– Default is to retain a restart point <strong>for</strong> the last substep of the last load step.<br />

– Recall: any substep can be perturbed, providing there is a restart point.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-40<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Static: Postprocessing<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-41<br />

Customer Training Material<br />

• Review the static results be<strong>for</strong>e<br />

proceeding.<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Analysis Settings: Prestress Environment<br />

• In the modal analysis, user can specify<br />

which restart point from the static<br />

analysis will be used as the prestress<br />

environment.<br />

• This can be specified by either<br />

(1) End of load step<br />

(2) Time<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-42<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Analysis Settings: Contact Status<br />

• The user also has some control over the<br />

contact status.<br />

• Available options are:<br />

(1) Use True Status<br />

– Use the status at the restart point.<br />

(2) Force Sticking<br />

– For frictional contact with mu>0, set<br />

sliding elements to sticking.<br />

(3) Force Bonded<br />

– Use bonded contact <strong>for</strong> all contact<br />

pairs that are closed.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-43<br />

Customer Training Material<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Postprocessing<br />

Customer Training Material<br />

• The modal results may be reviewed as described in the previous section.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-44<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

Postprocessing<br />

Customer Training Material<br />

• Note that the prestressed state increased the frequencies of this structure.<br />

– e.g. the first mode in this example increased from 108.3 Hz to 274.6 Hz<br />

Not Prestressed Prestressed<br />

• A prestress may not always increase the natural frequencies; a compressive<br />

load will decrease the frequencies.<br />

– In fact, fact a sufficiently-high compressive load will result in a natural frequency of<br />

zero, effectively replicating the results of a buckling analysis.<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-45<br />

Release 13.0<br />

March 2011


<strong>ANSYS</strong> <strong>Mechanical</strong> <strong>Linear</strong> <strong>and</strong> <strong>Nonlinear</strong> Dynamics<br />

D. Workshop - Modal Analysis<br />

This workshop consists of two problems:<br />

1. Modal analysis of a plate with a hole<br />

Customer Training Material<br />

– A step-by-step description of how to do the analysis.<br />

– You may choose to run this problem yourself, or your instructor may<br />

show it as a demonstration.<br />

(WS2A: Modal Analysis - Plate with a Hole).<br />

22. Pre-stressed Pre stressed Modal analysis of a model airplane wing<br />

– This is left as an exercise to you.<br />

(WS2B: Modal Analysis - Model Airplane Wing).<br />

<strong>ANSYS</strong>, Inc. Proprietary<br />

© 2011 <strong>ANSYS</strong>, Inc. All rights reserved.<br />

L02-46<br />

Release 13.0<br />

March 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!