04.05.2015 Views

Slides - School of Engineering - University of Warwick

Slides - School of Engineering - University of Warwick

Slides - School of Engineering - University of Warwick

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ES440/ES911: CFD<br />

Chapter 3. Finite Difference Methods<br />

Dr Yongmann M. Chung<br />

http://www.eng.warwick.ac.uk/staff/ymc/ES440.html<br />

Y.M.Chung@warwick.ac.uk<br />

<strong>School</strong> <strong>of</strong> <strong>Engineering</strong> & Centre for Scientific Computing<br />

<strong>University</strong> <strong>of</strong> <strong>Warwick</strong><br />

1


Chapter 3<br />

Finite Difference Methods<br />

2


3.1 Introduction<br />

A generic transport equation<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

3


3.1 Introduction<br />

A generic transport equation<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

In Cartesian Coordinates,<br />

∂ρuφ<br />

∂x + ∂ρvφ<br />

∂y + ∂ρwφ<br />

∂z<br />

= ∂<br />

∂x (Γ∂φ ∂x ) + ∂ ∂y (Γ∂φ ∂y ) + ∂ ∂z (Γ∂φ ∂z ) + q φ.<br />

3


3.1 Introduction<br />

A generic transport equation<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

In Cartesian Coordinates,<br />

∂ρuφ<br />

∂x + ∂ρvφ<br />

∂y + ∂ρwφ<br />

∂z<br />

= ∂<br />

∂x (Γ∂φ ∂x ) + ∂ ∂y (Γ∂φ ∂y ) + ∂ ∂z (Γ∂φ ∂z ) + q φ.<br />

Simplifications<br />

Convection Terms<br />

Diffusion Terms<br />

Source Term<br />

Unsteady Term (Ch. 6)<br />

3


3.2 Basic Concept<br />

First step is to discretise the geometric domain<br />

A numerical grid (or computational mesh) must be<br />

defined.<br />

Each node is uniquely identified by a set <strong>of</strong> indices, i in<br />

1D, (i, j) in 2D & (i, j, k) in 3D.<br />

4


3.2 - 1D Discretisation<br />

Divide the computational domain (L) using N grid points (or<br />

mesh points or nodes).<br />

x 1 , x 2 , x 3 , . . . , x i−1 , x i , x i+1 , . . . , x N−2 , x N−1 , x N .<br />

∆x i is the distance between the neighbour grid points.<br />

5


3.2 - Discretisation<br />

Each node has one unknown variable associated with it.<br />

1D: f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

2D: f 1,1 , f 2,1 , f 3,1 , . . . , f i−1,j , f i,j , f i+1,j , . . . , f N−1,N , f N,N .<br />

3D:<br />

f 1,1,1 , f 2,1,1 , f 3,1,1 , . . . , f i−1,j,k , f i,j,k , f i+1,j,k , . . . , f N,N,N .<br />

6


3.2 Basic Concept - Cont’d<br />

Uniform vs. Non-uniform grids<br />

7


3.2 Basic Concept - Cont’d<br />

Uniform vs. Non-uniform grids<br />

Structured vs. Unstructured.<br />

7


3.2 Basic Concept - Cont’d<br />

Each node has one unknown variable associated with it.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

8


3.2 Basic Concept - Cont’d<br />

Each node has one unknown variable associated with it.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

1D: f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

8


3.2 Basic Concept - Cont’d<br />

Each node has one unknown variable associated with it.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

1D: f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

2D: f 1,1 , f 1,2 , f 1,3 , . . . , f i−1,j , f i,j , f i+1,j , . . . , f N,N−1 , f N,N<br />

8


3.2 Basic Concept - Cont’d<br />

Replacing each term <strong>of</strong> the PDE by a finite-difference<br />

approximation.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

Convection Terms,<br />

Diffusion Terms,<br />

Source Term.<br />

9


3.2 Basic Concept - Cont’d<br />

A generic transport equation<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

10


3.2 Basic Concept - Cont’d<br />

A generic transport equation<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ<br />

∂x j<br />

) + q φ . (3.1 F&P )<br />

The numbers <strong>of</strong> equations and unknowns must be equal<br />

∂ρu j φ 1<br />

∂x j<br />

∂ρu j φ 2<br />

∂x j<br />

= ∂<br />

∂x j<br />

(Γ ∂φ 1<br />

∂x j<br />

) + q φ , (1)<br />

= ∂<br />

∂x j<br />

(Γ ∂φ 2<br />

∂x j<br />

) + q φ , (2)<br />

∂ρu j φ N<br />

∂x j<br />

.<br />

= ∂<br />

∂x j<br />

(Γ ∂φ N<br />

∂x j<br />

) + q φ .<br />

(N)<br />

10


3.2 - Finite Difference Approximations<br />

The idea behind FD Approximations is borrowed directly<br />

from the definition <strong>of</strong> a derivative<br />

( ) df<br />

dx<br />

x i<br />

= lim<br />

∆x→0<br />

f(x i + ∆x) − f(x i )<br />

. (3.2 F&P )<br />

∆x<br />

11


3.2 - Finite Difference Approximations<br />

Three Approximations<br />

Forward difference: f(x i ) and f(x i + ∆x),<br />

Backward difference: f(x i − ∆x) and f(x i ),<br />

Central difference: f(x i − ∆x) and f(x i + ∆x).<br />

12


3.2 - Finite Difference Approximations<br />

Three Approximations<br />

Forward difference: f(x i ) and f(x i + ∆x),<br />

Backward difference: f(x i − ∆x) and f(x i ),<br />

Central difference: f(x i − ∆x) and f(x i + ∆x).<br />

12


Taylor Series Expansion<br />

Taylor Series Expansion<br />

Any continuous differentiable function f(x) can, in the<br />

vicinity <strong>of</strong> x i , be expressed as a Taylor series:<br />

f(x) = f i +∆x<br />

( ) ∂f<br />

+ 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 + 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3<br />

· · · + 1 ( ∂ n f<br />

n! ∆xn ∂x<br />

)i<br />

n + H. (3.3 F&P )<br />

where H means all remaining HIGHER ORDER TERMS.<br />

+<br />

13


Taylor Series Expansion<br />

Taylor Series Expansion<br />

Any continuous differentiable function f(x) can, in the<br />

vicinity <strong>of</strong> x i , be expressed as a Taylor series:<br />

f(x) = f i +∆x<br />

( ) ∂f<br />

+ 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 + 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3<br />

· · · + 1 ( ∂ n f<br />

n! ∆xn ∂x<br />

)i<br />

n + H. (3.3 F&P )<br />

where H means all remaining HIGHER ORDER TERMS.<br />

+<br />

Expressions for the variable values in terms <strong>of</strong> the variable<br />

and its derivatives at x i .<br />

( ) ( ∂f ∂ 2 f<br />

f i , ,<br />

∂x<br />

i<br />

∂x 2 )i<br />

,<br />

( ∂ 3 f<br />

∂x 3 )i<br />

, . . . ,<br />

( ∂ n f<br />

∂x n )i<br />

.<br />

13


3.3 - Forward Difference: ∂f<br />

∂x<br />

Each node has one unknown variable associated with it.<br />

x 1 , x 2 , x 3 , . . . , x i−1 , x i , x i+1 , . . . , x N−2 , x N−1 , x N .<br />

f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

14


3.3 - Forward Difference: ∂f<br />

∂x<br />

Each node has one unknown variable associated with it.<br />

x 1 , x 2 , x 3 , . . . , x i−1 , x i , x i+1 , . . . , x N−2 , x N−1 , x N .<br />

f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

Finite Difference Formulae can be easily derived<br />

By replacing x by x i+1 .<br />

f i+1 = f i + ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

14


3.3 - Forward Difference: ∂f<br />

∂x<br />

Each node has one unknown variable associated with it.<br />

x 1 , x 2 , x 3 , . . . , x i−1 , x i , x i+1 , . . . , x N−2 , x N−1 , x N .<br />

f 1 , f 2 , f 3 , . . . , f i−1 , f i , f i+1 , . . . , f N−2 , f N−1 , f N .<br />

Finite Difference Formulae can be easily derived<br />

By replacing x by x i+1 .<br />

f i+1 = f i + ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

14


3.3 - Forward Difference: ∂f<br />

∂x<br />

Taylor Series <strong>of</strong> f i+1 at x i+1 .<br />

f i+1 = f i + ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

15


3.3 - Forward Difference: ∂f<br />

∂x<br />

Taylor Series <strong>of</strong> f i+1 at x i+1 .<br />

f i+1 = f i + ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

Rearranging Eqn. (3.3) and dividing by the finite-difference<br />

∆x gives<br />

∂f<br />

∂x = f i+1 − f i<br />

∆x<br />

− 1 2!<br />

∂ 2 f<br />

∂x 2 ∆x − 1 3!<br />

∂ 3 f<br />

∂x 3 ∆x2 + H. (3.4 F&P )<br />

The first term is a Finite Difference Approximation.<br />

The next term is the Leading Error term: O(∆x).<br />

15


3.3 - Forward Difference - Cont’d<br />

Formula (3.4) is usually recast in the following form<br />

∂f<br />

∂x = f i+1 − f i<br />

∆x<br />

+ O(∆x). (3.7 FP )<br />

This is referred to as the first-order forward difference.<br />

The exponent <strong>of</strong> ∆x in the leading error term is the order<br />

<strong>of</strong> accuracy.<br />

It is a useful measure <strong>of</strong> accuracy.<br />

It gives an indication <strong>of</strong> how rapidly the accuracy can be<br />

improved with the refinement <strong>of</strong> the grid spacing.<br />

16


3.3 - Forward Difference - Cont’d<br />

u<br />

u i+1<br />

Predicted du/dx<br />

u i<br />

True du/dx<br />

u i-1<br />

∆x ∆x<br />

∂f<br />

∂x ≈ f i+1 − f i<br />

. (3.7 F&P )<br />

∆x<br />

Truncation Error:<br />

T.E. ∼ O(∆x).<br />

x i-1<br />

x i<br />

x i+1<br />

x<br />

17


3.3 - Backward Difference: ∂f<br />

∂x<br />

By expanding f i−1 about the point x i .<br />

f i−1 = f i − ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

18


3.3 - Backward Difference: ∂f<br />

∂x<br />

By expanding f i−1 about the point x i .<br />

f i−1 = f i − ∆x<br />

( ) ∂f<br />

∂x<br />

i<br />

+ 1 2! ∆x2 ( ∂ 2 f<br />

∂x 2 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H.<br />

Similarly, rearranging the above Eqn. (3.3) and dividing by<br />

the finite-difference ∆x gives<br />

∂f<br />

∂x = f i − u i−1<br />

∆x<br />

+ 1 2!<br />

∂ 2 f<br />

∂x 2 ∆x − 1 3!<br />

∂ 3 f<br />

∂x 3 ∆x2 + H. (3.5 F&P )<br />

The first term is a Finite Difference Approximation.<br />

The next term is the Leading Error term: O(∆x).<br />

18


3.3 - Backward Difference - Cont’d<br />

Formula (3.5) is usually recast in the following form<br />

∂f<br />

∂x = f i − f i−1<br />

∆x<br />

+ O(∆x). (3.8 FP )<br />

This is referred to as the first-order backward<br />

difference.<br />

u<br />

u i+1<br />

u i<br />

True du/dx<br />

Predicted du/dx<br />

u i-1<br />

∂f<br />

∂x ≈ f i − f i−1<br />

. (3.8 F&P )<br />

∆x<br />

Truncation Error:<br />

T.E. ∼ O(∆x).<br />

∆x<br />

∆x<br />

x i-1<br />

x i<br />

x i+1<br />

x<br />

19


3.3 - Central Difference: ∂f<br />

∂x<br />

Taylor Series <strong>of</strong> f i+1 & f i−1 at both x i+1 & x i−1 .<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 ( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H,<br />

+ H.<br />

20


3.3 - Central Difference: ∂f<br />

∂x<br />

Taylor Series <strong>of</strong> f i+1 & f i−1 at both x i+1 & x i−1 .<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 ( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H,<br />

+ H.<br />

The widely used central difference formula can be<br />

obtained from subtraction <strong>of</strong> two Taylor series expansions.<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

− 1 3!<br />

∂ 3 f<br />

∂x 3 ∆x2 − 1 5!<br />

∂ 5 f<br />

∂x 5 ∆x4 + H. (3.6 F&P )<br />

20


3.3 - Central Differences - Cont’d<br />

Formula (3.6) is usually recast in the following form<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.8 FP )<br />

This is a second-order formula.<br />

u<br />

u i+1<br />

Predicted du/dx<br />

u i<br />

True du/dx<br />

u i-1<br />

∆x ∆x<br />

∂f<br />

∂x ≈ f i+1 − f i−1<br />

. (3.8 F&P )<br />

2∆x<br />

Truncation Error:<br />

T.E. ∼ O(∆x 2 ).<br />

x i-1<br />

x i<br />

x i+1<br />

x<br />

21


3.3 - Truncation Errors<br />

Numerically evaluated at x = 4.<br />

The absolute values <strong>of</strong> the differences from the exact<br />

solution.<br />

f(x) = sin x<br />

x 3 .<br />

With ∆x = 0.1<br />

f i−1 = −0.0115943,<br />

f i = −0.0118250,<br />

f i+1 = −0.0118726.<br />

22


3.3 - Fourth Order Accuracy<br />

In general, we can obtain higher accuracy if we include<br />

more points.<br />

Fourth Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

23


3.3 - Fourth Order Accuracy<br />

In general, we can obtain higher accuracy if we include<br />

more points.<br />

Fourth Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

Taylor Series <strong>of</strong> f i+2 , f i+1 , f i−1 & f i−2 at x i+2 , x i+1 , x i−1 &<br />

x i−2 .<br />

( ) ∂f<br />

f i+2 = f i + 2∆x + 1 ( ∂ 2 )<br />

f<br />

∂x 2! (2∆x)2 ∂x 2<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 )<br />

f<br />

∂x 2! ∆x2 ∂x 2<br />

( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 )<br />

f<br />

∂x 2! ∆x2 ∂x 2<br />

( ) ∂f<br />

f i−2 = f i − 2∆x + 1 ( ∂ 2 )<br />

f<br />

∂x 2! (2∆x)2 ∂x 2<br />

+ 1 3! (2∆x)3 ( ∂ 3 f<br />

∂x 3 )<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )<br />

+ H,<br />

+ H,<br />

− 1 3! (2∆x)3 ( ∂ 3 f<br />

∂x 3 )<br />

+ H,<br />

+ H.<br />

23


3.3 - Fourth Order Accuracy - Cont’d<br />

Rearranging the above equations and dividing by the<br />

finite-difference ∆x gives<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ 4 5!<br />

∂ 5 f<br />

∂x 5 ∆x4 + H.<br />

+ O(∆x 4 ). (3.14 F&P )<br />

24


3.3 - Fourth Order Accuracy - Cont’d<br />

Rearranging the above equations and dividing by the<br />

finite-difference ∆x gives<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ 4 5!<br />

∂ 5 f<br />

∂x 5 ∆x4 + H.<br />

+ O(∆x 4 ). (3.14 F&P )<br />

Fourth Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

Requires four grid points to achieve the fourth order<br />

accuracy.<br />

24


3.3 - Fourth Order Accuracy - Cont’d<br />

Rearranging the above equations and dividing by the<br />

finite-difference ∆x gives<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ 4 5!<br />

∂ 5 f<br />

∂x 5 ∆x4 + H.<br />

+ O(∆x 4 ). (3.14 F&P )<br />

Fourth Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

Requires four grid points to achieve the fourth order<br />

accuracy.<br />

24


3.3 - Higher Order Accuracy<br />

Second-Order Accuracy: T.E. ∼ O(∆x 2 ).<br />

Requires Two grid points, x i+1 & x i−1 .<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

25


3.3 - Higher Order Accuracy<br />

Second-Order Accuracy: T.E. ∼ O(∆x 2 ).<br />

Requires Two grid points, x i+1 & x i−1 .<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

Fourth-Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

Requires Four grid points at x i+2 , x i+1 , x i−1 & x i−2 .<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ O(∆x 4 ). (3.14 F&P )<br />

25


3.3 - Higher Order Accuracy<br />

Second-Order Accuracy: T.E. ∼ O(∆x 2 ).<br />

Requires Two grid points, x i+1 & x i−1 .<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

Fourth-Order Accuracy: T.E. ∼ O(∆x 4 ).<br />

Requires Four grid points at x i+2 , x i+1 , x i−1 & x i−2 .<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ O(∆x 4 ). (3.14 F&P )<br />

N-th Order Accuracy: T.E. ∼ O(∆x N ).<br />

Requires N grid points to achieve the N-th order<br />

accuracy.<br />

Taylor Series <strong>of</strong> f i+N/2 , . . . , f i+1 , f i−1 , . . . & f i−N/2 . 25


3.3 - High Order Accuracy - Cont’d<br />

N-th Order Accuracy: T.E. ∼ O(∆x N ).<br />

Requires N grid points to achieve the N-th order<br />

accuracy.<br />

The main difficulty with the higher order formulae occurs<br />

near boundaries <strong>of</strong> the domain.<br />

For example, the derivative <strong>of</strong> f at x 1 would require the<br />

value <strong>of</strong> f at x −1 which is not available.<br />

In practice, to alleviate this problem, we utilise lower<br />

order or non-central formulae near boundaries.<br />

26


3.3 - High Order Accuracy - Cont’d<br />

N-th Order Accuracy: T.E. ∼ O(∆x N ).<br />

Requires N grid points to achieve the N-th order<br />

accuracy.<br />

The main difficulty with the higher order formulae occurs<br />

near boundaries <strong>of</strong> the domain.<br />

For example, the derivative <strong>of</strong> f at x 1 would require the<br />

value <strong>of</strong> f at x −1 which is not available.<br />

In practice, to alleviate this problem, we utilise lower<br />

order or non-central formulae near boundaries.<br />

26


3.3 - High Order Accuracy - Cont’d<br />

N-th Order Accuracy: T.E. ∼ O(∆x N ).<br />

Requires N grid points to achieve the N-th order<br />

accuracy.<br />

The main difficulty with the higher order formulae occurs<br />

near boundaries <strong>of</strong> the domain.<br />

For example, the derivative <strong>of</strong> f at x 1 would require the<br />

value <strong>of</strong> f at x −1 which is not available.<br />

In practice, to alleviate this problem, we utilise lower<br />

order or non-central formulae near boundaries.<br />

26


3.4 Second Order Derivative: ∂2 f<br />

∂x 2<br />

Similar formulae can be derived for second order or higher<br />

order derivatives.<br />

( ) ∂f<br />

f i+1 = f i + ∆x<br />

∂x<br />

( ) ∂f<br />

f i−1 = f i − ∆x<br />

∂x<br />

i<br />

i<br />

+ 1 ( ∂ 2 f<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

+ 1 ( ∂ 2 f<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H,<br />

+ H.<br />

27


3.4 Second Order Derivative: ∂2 f<br />

∂x 2<br />

Similar formulae can be derived for second order or higher<br />

order derivatives.<br />

( ) ∂f<br />

f i+1 = f i + ∆x<br />

∂x<br />

( ) ∂f<br />

f i−1 = f i − ∆x<br />

∂x<br />

i<br />

+ 1 ( ∂ 2 f<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

+ 1 ( ∂ 2 f<br />

2! ∆x2 ∂x<br />

)i<br />

2<br />

After minor rearrangement, we get<br />

i<br />

+ 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

− 1 3! ∆x3 ( ∂ 3 f<br />

∂x 3 )i<br />

+ H,<br />

+ H.<br />

∂ 2 f<br />

∂x 2 = f i+1 − 2f i + f i−1<br />

∆x 2<br />

+ 1 12 ∆x2∂4 f<br />

∂x 4 + H. (3.30FP )<br />

27


3.4 - Higher Order Accuracy: O(∆x 4 )<br />

Second Order Accuracy: O(∆x 2 )<br />

∂ 2 f<br />

∂x 2 = f i+1 − 2f i + f i−1<br />

∆x 2 + O(∆x 2 ). (3.30 FP )<br />

28


3.4 - Higher Order Accuracy: O(∆x 4 )<br />

Second Order Accuracy: O(∆x 2 )<br />

∂ 2 f<br />

∂x 2 = f i+1 − 2f i + f i−1<br />

∆x 2 + O(∆x 2 ). (3.30 FP )<br />

Fourth Order Accuracy: O(∆x 4 )<br />

∂ 2 f<br />

∂x 2 = −f i+2 + 16f i+1 − 30f i + 16f i−1 − f i−2<br />

12∆x 2 + O(∆x 4 ).<br />

(3.32 F&P )<br />

Taylor Series <strong>of</strong> f i+N/2 , . . . , f i+1 , f i−1 , . . . & f i−N/2 at N<br />

points.<br />

28


3.4 Third Order Derivative: ∂3 f<br />

∂x 3<br />

Similar formulae can be derived for higher order derivatives.<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 + 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H,<br />

( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 − 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H.<br />

29


3.4 Third Order Derivative: ∂3 f<br />

∂x 3<br />

Similar formulae can be derived for higher order derivatives.<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 + 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H,<br />

( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 − 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H.<br />

Second Order Accuracy<br />

∂ 3 f<br />

∂x 3 = f i+2 − 2f i+1 + 2f i−1 − f i−2<br />

2∆x 3 + O(∆x 2 ).<br />

29


3.4 Third Order Derivative: ∂3 f<br />

∂x 3<br />

Similar formulae can be derived for higher order derivatives.<br />

( ) ∂f<br />

f i+1 = f i + ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 + 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H,<br />

( ) ∂f<br />

f i−1 = f i − ∆x + 1 ( ∂ 2 f<br />

∂x<br />

i<br />

2! ∆x2 ∂x<br />

)i<br />

2 − 1 ( ∂ 3 f<br />

3! ∆x3 ∂x<br />

)i<br />

3 + H.<br />

Second Order Accuracy<br />

∂ 3 f<br />

∂x 3 = f i+2 − 2f i+1 + 2f i−1 − f i−2<br />

2∆x 3 + O(∆x 2 ).<br />

Fourth Order Accuracy<br />

∂ 3 f<br />

∂x 3 = −f i+3 + 8f i+2 − 13f i+1 + 13f i−1 − 8f i−2 + f i−3<br />

8∆x 3 + O(∆x 4 ).<br />

29


First Order Accuracy: O(∆x)<br />

FORWARD & BACKWARD DIFFERENCES<br />

30


First Order Accuracy: O(∆x)<br />

FORWARD & BACKWARD DIFFERENCES<br />

Forward Difference<br />

∂f<br />

∂x = f i+1 − f i<br />

∆x<br />

+ O(∆x). (3.7 FP )<br />

30


First Order Accuracy: O(∆x)<br />

FORWARD & BACKWARD DIFFERENCES<br />

Forward Difference<br />

∂f<br />

∂x = f i+1 − f i<br />

∆x<br />

+ O(∆x). (3.7 FP )<br />

Backward Difference<br />

∂f<br />

∂x = f i − f i−1<br />

∆x<br />

+ O(∆x). (3.8 FP )<br />

30


Second Order Accuracy: O(∆x 2 )<br />

CENTRAL DIFFERENCES<br />

31


Second Order Accuracy: O(∆x 2 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

31


Second Order Accuracy: O(∆x 2 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

Second Derivative<br />

∂ 2 f<br />

∂x 2 = f i+1 − 2f i + f i−1<br />

∆x 2 + O(∆x 2 ). (3.30 FP )<br />

31


Second Order Accuracy: O(∆x 2 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = f i+1 − f i−1<br />

2∆x<br />

+ O(∆x 2 ). (3.9 FP )<br />

Second Derivative<br />

Third Derivative<br />

∂ 2 f<br />

∂x 2 = f i+1 − 2f i + f i−1<br />

∆x 2 + O(∆x 2 ). (3.30 FP )<br />

∂ 3 f<br />

∂x 3 = f i+2 − 2f i+1 + 2f i−1 − f i−2<br />

2∆x 3 + O(∆x 2 ).<br />

31


Fourth Order Accuracy: O(∆x 4 )<br />

CENTRAL DIFFERENCES<br />

32


Fourth Order Accuracy: O(∆x 4 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ O(∆x 4 ). (3.14 F&P )<br />

32


Fourth Order Accuracy: O(∆x 4 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ O(∆x 4 ). (3.14 F&P )<br />

Second Derivative<br />

∂ 2 f<br />

∂x 2 = −f i+2 + 16f i+1 − 30f i + 16f i−1 − f i−2<br />

12∆x 2 + O(∆x 4 ).<br />

(3.32 F&P )<br />

32


Fourth Order Accuracy: O(∆x 4 )<br />

CENTRAL DIFFERENCES<br />

First Derivative<br />

∂f<br />

∂x = −f i+2 + 8f i+1 − 8f i−1 + f i−2<br />

12∆x<br />

+ O(∆x 4 ). (3.14 F&P )<br />

Second Derivative<br />

∂ 2 f<br />

∂x 2 = −f i+2 + 16f i+1 − 30f i + 16f i−1 − f i−2<br />

12∆x 2 + O(∆x 4 ).<br />

Third Derivative<br />

(3.32 F&P )<br />

∂ 3 f<br />

∂x 3 = −f i+3 + 8f i+2 − 13f i+1 + 13f i−1 − 8f i−2 + f i−3<br />

8∆x 3 + O(∆x 4 ).<br />

32


Finite Difference Method for Elliptic PDE<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 + ∂2 u<br />

∂y 2 = f(x, y). 33


Finite Difference Method for Elliptic PDE<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 + ∂2 u<br />

= f(x, y).<br />

∂y2 FDM: Using Central Differences with Second Order<br />

Accuracy<br />

∂ 2 u<br />

∂x 2 = u i+1 − 2u i + u i−1<br />

∆x 2 + O(∆x 2 ),<br />

∂ 2 u<br />

∂y 2 = u j+1 − 2u j + u j−1<br />

∆y 2 + O(∆y 2 ). (3.30 FP )<br />

33


Finite Difference Method for Elliptic PDE<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 + ∂2 u<br />

= f(x, y).<br />

∂y2 FDM: Using Central Differences with Second Order<br />

Accuracy<br />

∂ 2 u<br />

∂x 2 = u i+1 − 2u i + u i−1<br />

∆x 2 + O(∆x 2 ),<br />

∂ 2 u<br />

∂y 2 = u j+1 − 2u j + u j−1<br />

∆y 2 + O(∆y 2 ). (3.30 FP )<br />

Resulting Finite Difference Equation (FDE) is<br />

u i+1,j − 2u i,j + u i−1,j<br />

∆x 2<br />

+ u i,j+1 − 2u i,j + u i,j−1<br />

∆y 2 = f i,j .<br />

33


One-Dimensional FDM<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 = f(x). 34


One-Dimensional FDM<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Using Central Differences with Second Order Accuracy<br />

u i+1 − 2u i + u i−1<br />

∆x 2 = g i .<br />

34


One-Dimensional FDM<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Using Central Differences with Second Order Accuracy<br />

u i+1 − 2u i + u i−1<br />

∆x 2 = g i .<br />

Multiplying ∆x 2 & rearranging, FDE is<br />

u i−1 − 2u i + u i+1 = f i .<br />

where α = 1<br />

∆x 2 & f i = g i /α.<br />

34


One-Dimensional FDM<br />

Elliptic PDE: Laplace equation<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Using Central Differences with Second Order Accuracy<br />

u i+1 − 2u i + u i−1<br />

∆x 2 = g i .<br />

Multiplying ∆x 2 & rearranging, FDE is<br />

u i−1 − 2u i + u i+1 = f i .<br />

where α = 1<br />

∆x 2 & f i = g i /α.<br />

34


One-Dimensional FDM<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

u i−1 − 2u i + u i+1 = f i .<br />

35


One-Dimensional FDM<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

Apply the FDE to the<br />

interior points<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

x 2 , x 3 , . . . , x i , . . . , x NX .<br />

x 1 & x NX+1 are<br />

boundary points.<br />

u i−1 − 2u i + u i+1 = f i .<br />

35


One-Dimensional FDM<br />

∂ 2 u<br />

∂x 2 = f(x).<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

Apply the FDE to the<br />

interior points<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

x 2 , x 3 , . . . , x i , . . . , x NX .<br />

x 1 & x NX+1 are<br />

boundary points.<br />

Domain size L = 1 &<br />

∆x = 0.2<br />

u i−1 − 2u i + u i+1 = f i .<br />

x 1 , x 2 , x 3 , x 4 , x 5 , x 6 .<br />

x 1 & x 6 are boundary.<br />

35


3.8 Algebraic Equation System<br />

u 1 − 2u 2 + u 3 = f 2<br />

u 2 − 2u 3 + u 4 = f 3 ,<br />

.<br />

u i−1 − 2u i + u i+1 = f i ,<br />

.<br />

u NX−2 − 2u NX−1 + u NX = f NX−1 ,<br />

u NX−1 − 2u NX + u NX+1 = f NX .<br />

Here, NX is the number <strong>of</strong> ∆x and we have NX −1 number<br />

<strong>of</strong> equations for u 2 , u 3 , u 4 , . . . u i , . . . , u NX−2 , u NX−1 , u NX .<br />

u 1 and u NX+1 are boundary values.<br />

36


3.8 - Linear Algebraic Equation<br />

Finite Difference Equations, (FDE) are<br />

u i−1 − 2u i + u i+1 = f i .<br />

37


3.8 - Linear Algebraic Equation<br />

Finite Difference Equations, (FDE) are<br />

u i−1 − 2u i + u i+1 = f i .<br />

The result <strong>of</strong> discretisation is a system <strong>of</strong> linear algebraic<br />

equations:<br />

A P φ P + ∑ l<br />

A l φ l = Q P , (3.42 F&P )<br />

P denotes the node at which the FDE is approximated,<br />

Index l runs over the neighbour nodes involved in FDA.<br />

37


3.8 - Matrix Equations for 1D FDM<br />

The result <strong>of</strong> discretisation is a system <strong>of</strong> linear algebraic<br />

equations:<br />

⎛<br />

⎞⎛<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

⎜<br />

⎝ 1 −2 1 ⎟⎜<br />

⎠⎝<br />

1 −2<br />

u 2<br />

u 3<br />

u i<br />

u NX−1<br />

u NX<br />

⎞ ⎛<br />

⎞<br />

f 2 − u 1<br />

f 3<br />

=<br />

f i<br />

.<br />

⎟ ⎜<br />

⎠ ⎝ f NX−1<br />

⎟<br />

⎠<br />

f NX − u NX+1<br />

38


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

39


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,<br />

⎟<br />

⎠<br />

39


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,Q =<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

f 2 − u 1<br />

f 3<br />

f i<br />

,<br />

f NX−1<br />

⎟<br />

⎠<br />

f NX − u NX+1<br />

39


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,Q =<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

f 2 − u 1<br />

f 3<br />

f i<br />

,<br />

f NX−1<br />

⎟<br />

⎠<br />

f NX − u NX+1<br />

and φ = (u 2 , u 3 , . . . , u i , . . . u NX−1 , u NX ) T .<br />

39


1-D Navier-Stokes Equation<br />

Elliptic PDE: Laplace equation<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx . 40


1-D Navier-Stokes Equation<br />

Elliptic PDE: Laplace equation<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx .<br />

Using Central Differences with Second Order Accuracy<br />

1<br />

Re<br />

u j+1 − 2u j + u j−1<br />

∆y 2<br />

= dp<br />

dx . 40


1-D Navier-Stokes Equation<br />

Elliptic PDE: Laplace equation<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx .<br />

Using Central Differences with Second Order Accuracy<br />

1<br />

Re<br />

u j+1 − 2u j + u j−1<br />

∆y 2<br />

= dp<br />

dx .<br />

Multiplying Re∆y 2 & rearranging, FDE is<br />

u j−1 − 2u j + u j+1 = dp<br />

dx Re/α.<br />

where α = 1<br />

∆y 2 . 40


One-Dimensional FDM<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx .<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

u j−1 − 2u j + u j+1 = dp<br />

dx Re/α.<br />

41


One-Dimensional FDM<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx .<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

Apply the FDE to the<br />

interior points<br />

x 2 , x 3 , . . . , x i , . . . , x NX .<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

x 1 & x NX+1 are<br />

boundary points.<br />

u j−1 − 2u j + u j+1 = dp<br />

dx Re/α.<br />

41


One-Dimensional FDM<br />

1<br />

Re<br />

∂ 2 u<br />

∂y 2 = dp<br />

dx .<br />

Divide the computational<br />

domain into NX steps<br />

(control volumes).<br />

Apply the FDE to the<br />

interior points<br />

x 2 , x 3 , . . . , x i , . . . , x NX .<br />

∆x<br />

1 2 i i+1 NX NX+1<br />

x 1 & x NX+1 are<br />

boundary points.<br />

Domain size L = 1.2 &<br />

∆x = 0.2<br />

u j−1 − 2u j + u j+1 = dp<br />

dx Re/α.<br />

x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x 7 .<br />

x 1 & x 7 are boundary.<br />

41


3.8 Algebraic Equation System<br />

u 1 − 2u 2 + u 3 = f 2 /α,<br />

u 2 − 2u 3 + u 4 = f 3 /α,<br />

u 3 − 2u 4 + u 5 = f 4 /α,<br />

u 4 − 2u 5 + u 6 = f 5 /α,<br />

u 5 − 2u 6 + u 7 = f 6 /α.<br />

Here, NY = 6 is the number <strong>of</strong> ∆y = 0.2 and we have<br />

NY − 1 = 5 number <strong>of</strong> equations for u 2 , u 3 , u 4 , u 5 , u 6 .<br />

u 1 and u 7 are boundary values.<br />

f = Re<br />

α . 42


3.8 - Matrix Equations for 1D FDM<br />

The result <strong>of</strong> discretisation is a system <strong>of</strong> linear algebraic<br />

equations:<br />

⎛<br />

⎞⎛<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

⎜<br />

⎝ 1 −2 1 ⎟⎜<br />

⎠⎝<br />

1 −2<br />

⎞ ⎛<br />

u 2<br />

u 3<br />

u 4<br />

=<br />

u 5<br />

⎟ ⎜<br />

⎠ ⎝<br />

u 6<br />

⎞<br />

f2/α − u 1<br />

f3/α<br />

f 4 /α<br />

.<br />

f 5 /α ⎟<br />

⎠<br />

f 6 /α − u 7<br />

43


3.8 - Matrix Equations for 1D FDM<br />

The result <strong>of</strong> discretisation is a system <strong>of</strong> linear algebraic<br />

equations:<br />

⎛<br />

⎞⎛<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

⎜<br />

⎝ 1 −2 1 ⎟⎜<br />

⎠⎝<br />

1 −2<br />

⎞ ⎛<br />

u 2<br />

u 3<br />

u 4<br />

=<br />

u 5<br />

⎟ ⎜<br />

⎠ ⎝<br />

u 6<br />

⎞<br />

f2/α − u 1<br />

f3/α<br />

f 4 /α<br />

.<br />

f 5 /α ⎟<br />

⎠<br />

f 6 /α − u 7<br />

At walls, due to no-slip boundary condition, u 1 = 0 & u 7 = 0.<br />

43


Tri-Diagonal Matrix<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

AX = B<br />

⎞<br />

b 1 c 1<br />

a 2 b 2 c 2<br />

a 3 b 3 c 3<br />

,B =<br />

a NX−1 b NX−1 c NX−1<br />

⎟<br />

⎠<br />

a NX b NX<br />

⎛<br />

⎜<br />

⎝<br />

f 1<br />

f 2<br />

f 3<br />

f NX−1<br />

f NX<br />

⎞<br />

,<br />

⎟<br />

⎠<br />

X = (u 1 , u 2 , u 3 , u NX−1 , u NX ) T .<br />

44


TDMA: Thomas Algorithm<br />

An upper triangular form <strong>of</strong> the tridiagonal matrix may be<br />

obtained by computing the new b i by<br />

b i = b i −<br />

and the new f i by<br />

f i = f i −<br />

a i<br />

b i−1<br />

c i−1 ,<br />

a i<br />

b i−1<br />

f i−1 ,<br />

i = 2,3, . . . , NX,<br />

i = 2,3, . . . , NX,<br />

then computing the unknowns from back substitution according<br />

to u NX = f NX /b NX and then<br />

u k = f k − c k u k+1<br />

b k<br />

, k = NX − 1, NX − 2, . . . ,2,1.<br />

45


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

46


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,<br />

⎟<br />

⎠<br />

46


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,Q =<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

f2/α − u 1<br />

f3/α<br />

f4/α<br />

,<br />

f5/α ⎟<br />

⎠<br />

f6/α − u 7<br />

46


3.8 - Matrix Equations - Cont’d<br />

Algebraic Equation:<br />

Aφ = Q. (3.43 F&P )<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

−2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2 1<br />

1 −2<br />

⎞<br />

,Q =<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

f2/α − u 1<br />

f3/α<br />

f4/α<br />

,<br />

f5/α ⎟<br />

⎠<br />

f6/α − u 7<br />

and φ = (u 2 , u 3 , u 4 , u 5 , u 6 ) T .<br />

46


Solution to 1D Matrix Equations<br />

Direct solver using Gauss elimination.<br />

47


Solution to 1D Matrix Equations<br />

Direct solver using Gauss elimination.<br />

Tri-Diagonal Matrix Algorithm.<br />

47


Solution to 1D Matrix Equations<br />

Direct solver using Gauss elimination.<br />

Tri-Diagonal Matrix Algorithm.<br />

More details on Martix Computation (Ch. 5)<br />

47


Example <strong>of</strong> First-Order ODE<br />

Heat Tranfer for Conduction:<br />

d 2 T<br />

dx 2 + h′ (T a − T) = 0<br />

Computational domain: 0 ≤ x ≤ 10.<br />

T 1 = 40, T NX = 200, T a = 20 & h ′ = 0.01.<br />

48


Example <strong>of</strong> First-Order ODE<br />

Heat Tranfer for Conduction:<br />

d 2 T<br />

dx 2 + h′ (T a − T) = 0<br />

Computational domain: 0 ≤ x ≤ 10.<br />

T 1 = 40, T NX = 200, T a = 20 & h ′ = 0.01.<br />

Using the second-order central difference<br />

T i+1 − 2T i + T i−1<br />

∆x 2 − h ′ T i = −h ′ T a ,<br />

( )<br />

1 2<br />

∆x 2T i−1 −<br />

∆x 2 + h′ T i + 1<br />

∆x 2u i+1 = −h ′ T a .<br />

48


3.11 Example<br />

The generic transport equation is.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(<br />

Γ ∂φ<br />

∂x j<br />

)<br />

+ q φ . (3.1 F&P )<br />

49


3.11 Example<br />

The generic transport equation is.<br />

∂ρu j φ<br />

∂x j<br />

= ∂<br />

∂x j<br />

(<br />

Γ ∂φ<br />

∂x j<br />

)<br />

+ q φ . (3.1 F&P )<br />

A one-dimensional generic transport equation is.<br />

∂ρuφ<br />

∂x = ∂ (<br />

Γ ∂φ )<br />

. (3.1 F&P )<br />

∂x ∂x<br />

With the boundary conditions: φ = φ 0 at x = 0, φ = φ L at<br />

x = L.<br />

The density ρ and the velocity u are assumed constant.<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!