03.05.2015 Views

Cyclone and Storm Surge - Iczmpwb.org

Cyclone and Storm Surge - Iczmpwb.org

Cyclone and Storm Surge - Iczmpwb.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

HAZARD ASSESSMENT AND DISASTER MITIGATION<br />

FOR WEST BENGAL DUE TO TROPICAL CYCLONES<br />

Project sponsored by<br />

Department of Disaster Management, Government of West Bengal<br />

Report prepared by:<br />

Indian Institute of Technology, Kharagpur<br />

September, 2006


Acknowledgement<br />

This project was completed with the help extended by many <strong>org</strong>anizations <strong>and</strong> individuals, to whom<br />

we are equally grateful. However, it is not possible to name all, <strong>and</strong> we wish to record our sincere<br />

thanks to the following Government departments <strong>and</strong> offices:<br />

1. Department of Disaster Management, Government of West Bengal<br />

2. Department of Irrigation <strong>and</strong> Waterways, Government of West Bengal<br />

3. Department of L<strong>and</strong> Records <strong>and</strong> Surveys, Government of West Bengal<br />

4. Sundarban Development Board, Government of West Bengal<br />

Acknowledgement<br />

5. District Forest Officer, 24 Parganas (South)<br />

6. Kolkata Municipal Corporation<br />

7. Bidhannagar Municipal Corporation<br />

8. Kolkata Port Trust<br />

9. Kolkata Environment Improvement Project<br />

10. Survey of India<br />

11. National Thematic Mapping Organisation<br />

12. India Meteorological Department<br />

13. Census of India<br />

14. Regional Remote Sensing Service Centre (ISRO), Kharagpur<br />

We are also thankful to:<br />

1. Sri Pijush Kumar Ghosh, Retired Superintending Engineer, I&W Department<br />

2. Sri Tushar Kanjilal, Member, Sundarban Development Board


Project Team<br />

Though the outcome of the project was mostly a combined effort of a joint team of researchers<br />

belonging to various disciplines, the following broad areas were looked into by the experts mentioned<br />

against each.<br />

Overall planning <strong>and</strong> advice<br />

Prof. S K Dube, Director, IIT, Kharagpur<br />

regarding storm surge modelling<br />

Project Team<br />

Analysis of cyclone data <strong>and</strong><br />

assessment of cyclone hazard<br />

Modelling of ocean hydrodynamics<br />

<strong>and</strong> assessment of storm surge hazard<br />

Vulnerability assessment<br />

GIS integration, river flow modeling<br />

<strong>and</strong> study of Kolkata <strong>and</strong> suburbs drainage hazard<br />

Dr. M M<strong>and</strong>al, Centre for Ocean, River,<br />

<strong>and</strong> L<strong>and</strong> Sciences<br />

Dr. P Bhaskaran, Department of Ocean<br />

Engineering & Naval Arch.<br />

Dr. Tarak Nath Mazumder, Department of<br />

Architecture & Regional Planning<br />

Dr. Dhrubajyoti Sen, Department of Civil<br />

Engineering<br />

An important component of the project has been the identification of the present bank <strong>and</strong> shorelines<br />

of the rivers, alignment of the embankments, location of mangrove forest zones, along with other<br />

l<strong>and</strong> use patterns from satellite imageries. This was done by a team of scientists from the Indian<br />

Space Research Organisation – Regional Remote Sensing Service Centre (RRSSC), Kharagpur.<br />

Director (RRSSC) obtained special permission from the National Remote Sensing Agency (NRSA)<br />

for availing LISS III as well as PAN data for the study area, for which the project team is immensely<br />

grateful. River modelling was assisted by Dr. C Chatterjee, Department of Agriculture <strong>and</strong> Food<br />

Engineering.


Contents<br />

Preamble<br />

Chapter 1 Introduction to hazard assessment <strong>and</strong> disaster mitigation study for West Bengal<br />

Contents<br />

Chapter 2<br />

Tropical cyclones <strong>and</strong> their effects in West Bengal<br />

Chapter 3<br />

Effect of cyclones on Kolkata <strong>and</strong> surroundings<br />

Chapter 4<br />

Hazard analysis: cyclone <strong>and</strong> storm surge<br />

Chapter 5<br />

Vulnerability assessment for coastal districts of West Bengal<br />

Chapter 6<br />

Mitigation strategies <strong>and</strong> proposed measures for the districts<br />

Chapter 7<br />

Mitigation strategies <strong>and</strong> proposed measures for Kolkata <strong>and</strong> surroundings<br />

Executive summary of recommendations<br />

References


Preamble<br />

The State of West Bengal, unlike others, is prone to a wide spectrum of natural hazards ranging from<br />

l<strong>and</strong>slides in hilly regions, flooding <strong>and</strong> bank erosion of rivers, earthquake, <strong>and</strong> devastations due to<br />

cyclones. Of these, the last mentioned inflicts damage in many ways – generation of storm surge in<br />

the ocean that lashes against the coast, the strong gusts of wind that threatens to wipe out villages,<br />

<strong>and</strong> the extreme precipitation that causes drainage congestion, especially in urbanized areas. In a<br />

way, cyclones form a veritable threat to nearly one-third of the state’s population that has the largest<br />

concentration in the southern districts, which lie not very far from the Bay of Bengal, including the<br />

state capital of Kolkata.<br />

The report presented herein attempts to look into the threat perception to the State of West Bengal<br />

<strong>and</strong> suggest possible mitigation measures. The mitigation measures suggested are in the lines of the<br />

recommendations of the National <strong>Cyclone</strong> Risk Mitigation Project (NCRMP), like strengthening <strong>and</strong><br />

raising of embankments to prevent sea water intrusion <strong>and</strong> inundation, shelter belt plantations,<br />

regeneration of mangroves, location of cyclone shelters, identification of missing road links, etc. In<br />

addition, a detailed study has been done to analyse the effect of extreme cyclonic precipitation over<br />

the city of Kolkata <strong>and</strong> its highly urbanized surroundings, though a threat to the city by way of<br />

cyclonic storm appears to be rare but not impossible. This is proved by the records of 1737, when a<br />

huge wave of water sweeping along river Hooghly cast off thous<strong>and</strong>s of boats <strong>and</strong> ships along the<br />

river. The accompanying storm is said to have devastated much of the city’s mud walled <strong>and</strong><br />

thatched houses as has been recorded in the registers of the East India Company.<br />

This report has been attempted to be made as comprehensive as possible, taking into account every<br />

minute detail available. However, it is natural that there could be some inadvertent lapses at some<br />

places, for which we would look forward to any constructive suggestion. We would also welcome any<br />

opinion that may enhance the completeness of this report.<br />

Preamble<br />

(Prof. Shishir Kumar Dube)<br />

Director, IIT Kharagpur<br />

Principal Investigator


Chapter One<br />

Introduction to Hazard Assessment <strong>and</strong> Disaster<br />

Mitigation Study for West Bengal<br />

1.1. Motivation for the study<br />

CHAPTER 1<br />

The “Vulnerability Reduction & Sustainable Environment” chapter of the United Nations Development<br />

Programme (UNDP) in its website http://www.undp.<strong>org</strong>.in/dmweb/default.htm presents a map (Figure<br />

1-1) that shows the states most prone to severe cyclonic storms as being the coastal states of<br />

Gujarat, Tamil Nadu, Andhra Pradesh <strong>and</strong> West Bengal.<br />

Figure 1-1. UNDP map website showing the regions affected by strong winds <strong>and</strong> cyclones<br />

According to the Indian Meteorological Department (IMD), the most destructive element associated<br />

with an intense cyclone is storm surge. This may lead to inundations as well as coastline washouts.


1.2<br />

IMD, in its website (http://www.imdmumbai.gov.in/cycdisasters.htm) article on the surge prone coasts<br />

of India also mentions that the vulnerability to storm surges is not uniform along Indian coasts. The<br />

following segments of the east coast of India are most vulnerable to high surges:<br />

1. North Orissa <strong>and</strong> West Bengal coasts.<br />

2. Andhra Pradesh coast between Ongole <strong>and</strong> Machilipatnam.<br />

3. Tamil Nadu coast, south of Nagapatnam.<br />

It may be of interest to note that the West coast of India is less vulnerable to storm surges than the<br />

east coast of India in terms of both the height of storm surge as well as frequency of occurrence.<br />

The strong winds associated with a cyclone may destroy infrastructure, including dwelling houses<br />

especially if these are the rural thatched types with mud walls. It must be remembered that the<br />

regions very prone to cyclonic storms lie along the coastline <strong>and</strong> the socio-economic st<strong>and</strong>ard of the<br />

people residing here is, on an average, rather low except for the few towns. It is also well known that<br />

cyclonic storms are also associated with heavy precipitation. Hence, inundation by flooding due to<br />

high rainfall is also considered as a disaster related to tropical cyclones.<br />

The table of disasters in India (for the entire nineteenth century) presented in the UNDP website<br />

under the title “Disaster Related Database” also shows that the State of West Bengal has suffered<br />

the worst due to cyclonic storms, followed by floods, droughts <strong>and</strong> earthquakes. Hence, the present<br />

task of evaluating the hazard caused by cyclones to the state <strong>and</strong> recommendations of mitigation<br />

measures has been the result of a prudent <strong>and</strong> timely decision.<br />

1.2. Background, key concepts <strong>and</strong> methodology<br />

The project was initiated at the request of the Department of Relief, Government of West Bengal after<br />

an initial meeting that took place in June, 2005 at Writer’s Building’s, Kolkata. It emerged from this<br />

<strong>and</strong> the subsequent meetings that the loss of lives <strong>and</strong> property due to cyclones having been quite<br />

heavy for the State, there is an urgent need to evaluate the hazard <strong>and</strong> vulnerability of the different<br />

cyclone prone regions <strong>and</strong> suggest possible disaster mitigation measures. It was also decided that<br />

the suggestive measures should more or less be in the lines of National <strong>Cyclone</strong> Risk Mitigation<br />

Project (NCRMP) guidelines.<br />

The core of the project lies in the determination of the following:<br />

1. Hazard analysis: This includes the study of cyclone tracks <strong>and</strong> related information for past<br />

years as available <strong>and</strong> evaluation of the hazard to the different parts of the state that are


1.3<br />

most likely to be affected by its effect. Since historical records would show a range of storms<br />

varying from the most severe to the mild, it would be necessary to categorise the storms <strong>and</strong><br />

decide upon a certain feasible storm intensity which may practicably be countered by the<br />

various risk mitigation measures. Adoption of a very severe storm is likely to lead to an<br />

uneconomical solution. In addition, study of the storm surges likely to be generated by the<br />

action of cyclones. This has to be tested with the most severe as well as the most practicable<br />

storm as obtained from the cyclone data analysis as mentioned in the paragraph above.<br />

Conditions of simultaneous occurrence of high tides have also to be kept in mind. A study of<br />

river water level rise due to the rise of the ocean water level as a result of the storm surge<br />

coupled with high tide as explained above is necessary. The upl<strong>and</strong> discharge has also to be<br />

considered, since a higher discharge may lead to a higher elevation of the river water level.<br />

Study of water logging scenario in the urban cluster of the State capital of Kolkata <strong>and</strong> its<br />

surroundings due to heavy precipitation resulting from tropical cyclones is a part of the urban<br />

hazard analysis due to cyclones.<br />

2. Vulnerability studies: Vulnerability or susceptibility is related to the characteristics of the<br />

region <strong>and</strong> has to be studied in detail after dividing the study area (in this case the cyclone<br />

prone region of the State) into appropriate units. In the present study, it was decided to<br />

choose the Development Block as one unit while studying the vulnerability vis-à-vis the effect<br />

of cyclones. It may be remembered that assessing the vulnerability of human settlements is<br />

an important task, which can be correctly assessed by taking into account the following<br />

factors (a) Shelter type including construction material, (b) Physical connectivity, including<br />

road <strong>and</strong> navigation network, (c) Local economy, (d) Physical infrastructure, (e) Social<br />

infrastructure, <strong>and</strong> (f) Incidence of disaster impact on various socio-economic groups.<br />

3. Mitigation measures in the form of embankments that may be newly constructed or the older<br />

ones strengthened. In the coastal districts of West Bengal, especially in the Sundarban<br />

region, the 54 of the 102 isl<strong>and</strong>s of the river Ganga estuary are inhabited <strong>and</strong> most of them<br />

are enclosed by circuit embankments. Many of these embankments are more than a century<br />

old <strong>and</strong> not constructed according to scientific principles. These need strengthening.<br />

4. Mitigation measures in the form of mangrove plantations that may protect the embankments<br />

from getting eroded or shelter belt plantations that may lessen the impact of the severe<br />

storms moving inl<strong>and</strong>.


1.4<br />

5. Proposals for location of cyclone shelters <strong>and</strong> suggestions for missing road links. These<br />

have to be done on the basis of the vulnerability studies.<br />

6. Proposals for suggesting relief to the urban dwellers of Kolkata by way of removing storm<br />

water in a more effective way <strong>and</strong> prevent congestion of water in the streets during a<br />

cyclonic depression.<br />

1.3. Scope of the work <strong>and</strong> limitation<br />

In order to effectively tackle the project in the limited time available, it was decide to depend upon<br />

secondary data as available from various sources. The scope of the work thus includes the collection<br />

of appropriate data, both in the form of statistics <strong>and</strong> written documents as well as in maps <strong>and</strong><br />

integrating them together to form an overall database useful for the study. The cyclonic storm data<br />

have been obtained from the Indian Meteorological Department. The bathymetry of the oceans,<br />

particularly the Bay of Bengal has been obtained from an international website. The present day<br />

location of embankments <strong>and</strong> mangrove forests have been derived from satellite imageries, with the<br />

help of the Regional Remote Sensing Service Centre (ISRO), located within the campus of IIT<br />

Kharagpur. The bathymetries of the rivers have been obtained from the Kolkata Port Trust. Details of<br />

embankments have been acquired from the Irrigation <strong>and</strong> Waterways Department, Government of<br />

West Bengal. The details about the storm water disposal of the city of Kolkata have been derived<br />

from the information supplied by the Kolkata Municipal Corporation. The base map for preparing the<br />

GIS integration was done from the topo-sheets of the Survey of India. The Development Block<br />

boundaries were digitized from the District Planning maps of the National Thematic Mapping<br />

Organisation. The Block-wise statistics on housing was extracted from the Census of India data.<br />

The basic data collected above was integrated into a GIS database that provided the framework for<br />

further analysis. The storm surge analysis was carried out by the IIT Delhi numerical model <strong>and</strong> the<br />

river flood analysis was done with the help of the software MIKE FLOOD, a numerical simulation<br />

model of DHI. On the basis of these studies, appropriate mitigation measures have been suggested,<br />

which are in line with those suggested by the various technical departments of the Government.


Chapter Two<br />

Tropical <strong>Cyclone</strong>s <strong>and</strong> their Effects in West Bengal<br />

2.1. General Introduction<br />

Technically, the cyclone affecting the coast of West Bengal, <strong>and</strong> indeed the remaining of coast of the<br />

country, is called the Tropical <strong>Cyclone</strong> which is a storm system with a closed circulation around a<br />

centre of low pressure, driven by the heat released when moist air rises <strong>and</strong> condenses. As the name<br />

suggests, the origin of these is in the tropics <strong>and</strong> has an anticlockwise circulation in the northern<br />

hemisphere. Tropical cyclones can produce extremely high winds, generate torrential rain, <strong>and</strong> drive<br />

up the ocean water against the coast resulting in a storm surge. The effects of a cyclone on a<br />

population can be catastrophic <strong>and</strong> as has been recorded in the historical annals of exceptional<br />

cyclones, the storm of 1737 has been one of the worst, which had devastated the city of Kolkata<br />

(Calcutta then). Though many accounts prevail, Bilham (1994) evaluates the event more rationally by<br />

examining many contemporary documents <strong>and</strong> concludes that a cyclonic storm had caused a huge<br />

wave to rush up the river Hooghly (reportedly 40 feet high) <strong>and</strong> destroy many fishing boats <strong>and</strong> ships.<br />

Evidences also show that the strength of the storm had caused destruction of most of the thatched<br />

houses belonging to the local population. The spire of St. Anne’s church within Fort William (later<br />

destroyed during Siraj-ud-Daula’s campaign) had probably toppled due to the gust of the cyclonic<br />

winds. Though this kind of cyclonic devastation has not been experienced by Kolkata since then, but<br />

it may be presumed that such an event could have been one of an extreme kind in which the cyclone<br />

track had been coincident with the path of the river Hooghly. This might explain the huge upsurge of<br />

a wave <strong>and</strong> devastation of houses by winds. It is possible that the waves penetrated 60 leagues<br />

(nearly 300 kms) inl<strong>and</strong> from the mouth of the bay, as one may see from the remnants of the mast of<br />

the Portugese ship that ran aground near B<strong>and</strong>el <strong>and</strong> has been kept for public viewing at the old<br />

church compound there.<br />

CHAPTER 2<br />

Other notable cyclones originating in the northern Indian Ocean are seen to have either hit the coast<br />

of West Bengal or have grazed menacingly close by. For example, the severe tropical cyclone hit<br />

Kolkata in 1864, reportedly killing nearly 60,000 people. This event <strong>and</strong> the subsequent famines in<br />

1866 <strong>and</strong> 1871 led to the formation of the India Meteorological Department. The cyclonic devastation<br />

of October 1942 is also reported to have been quite high, with wind speeds <strong>and</strong> Sagar Isl<strong>and</strong>s being<br />

recorded to be as high as nearly 165 km per hour. The next severe cyclone that finds mention in this


2.2<br />

region is that which struck the south eastern coast of present Bangladesh in November 1970, just a<br />

few months ahead of the foundation of the country. The extent of devastation had been huge –<br />

reportedly 5,00,000 dead <strong>and</strong> 1,00,000 missing thus distinguishing it to be one of the worst natural<br />

disasters of modern times. A perusal of the storm track indicates that it had moved uncannily close to<br />

the shores of West Bengal, <strong>and</strong> one may imagine the grave consequences had the path been just<br />

deviated to make a l<strong>and</strong>fall here.<br />

The next two severe cyclones, however, have luckily spared West Bengal – the first one being the<br />

1991 cyclone that made l<strong>and</strong>fall at Chittagong in Bangladesh <strong>and</strong> the second being the 1999 Orissa<br />

cyclone that hit Paradeep port badly. In either case, much of the deaths were by flooding caused by<br />

the torrential rains generated as a consequence of the storm.<br />

Figure 2-1. Tracks of all the major tropical cyclones in the Bay of Bengal since 1970


2.3<br />

Tracks of cyclones from 1970 till date, plotted on a map of the Indian Ocean, is available from the<br />

web-site http://en.wikipedia.<strong>org</strong>/wiki/Tropical_cyclone <strong>and</strong> has been reproduced in Figure 2-1. It may<br />

be noted that the strength of the cyclones shown in the map have been categorised according to the<br />

Saffir-Simpson scale, which is described briefly in Table 1.<br />

The authors of this report are greatly thankful to user Nilfanion of Wikipedia for the image provided in<br />

the web-site. The tracking data used is from the Joint Typhoon Warning Center, which is a joint<br />

United States Navy–United States Air Force task force located at Naval Pacific Meteorology <strong>and</strong><br />

Oceanography Center in Pearl Harbor, Hawaii, USA.<br />

Table 2-1. Strength of tropical cyclones classified according to the Saffir –Simpson scale<br />

Category<br />

Wind speed (km per hour)<br />

5 ≥250<br />

4 210–249<br />

3 178–209<br />

2 154–177<br />

1 119–153<br />

Tropical storm 63–117<br />

Tropical depression 0–62<br />

Some of the other important tracks, posted in the Wikipedia website under the topic of tropical<br />

cyclones (http://en.wikipedia.<strong>org</strong>/wiki/Tropical_cyclone) are given in Figures 2-2 to 2-4.


2.4<br />

Figure 2-2. Track of the 1970 Bhola (Bangladesh) cyclone<br />

(Change of strength is not clearly shown, but is estimated to be definitely on the higher side of<br />

magnitude 5)<br />

Figure 2-3. Track of the 1991 Bangladesh cyclone


2.5<br />

Figure 2-4. Track of the 1999 Orissa cyclone<br />

2.2. Impact on life <strong>and</strong> property<br />

A mature tropical cyclone can release heat at the rate of 6x10 14 Watts or more (NASA, 2000). The<br />

most devastating effects of a tropical cyclone occur when they cross coastline, making l<strong>and</strong>fall.<br />

India Meteorological Department (website: http://www.imdmumbai.gov.in/cycdisasters.htm), mentions<br />

that there are three elements associated with a cyclone, which cause destruction. These are:<br />

• <strong>Cyclone</strong>s are associated with high-pressure gradients <strong>and</strong> consequent strong winds. These,<br />

in turn, generate storm surges. A storm surge is an abnormal rise of sea level near the coast<br />

caused by a severe tropical cyclone; as a result, sea water inundates low lying areas of<br />

coastal regions drowning human beings <strong>and</strong> livestock, eroding beaches <strong>and</strong> embankments,<br />

destroying vegetation <strong>and</strong> reducing soil fertility.<br />

• Very strong winds may damage installations, dwellings, communication systems, trees, etc.<br />

resulting in loss of life <strong>and</strong> property.<br />

• Heavy <strong>and</strong> prolonged rains due to cyclones may cause river floods <strong>and</strong> submergence of low<br />

lying areas by rain causing loss of life <strong>and</strong> property. Floods <strong>and</strong> coastal inundation due to<br />

storm surges pollute drinking water sources.<br />

It may be mentioned that all the three factors mentioned above occur simultaneously <strong>and</strong>, therefore,<br />

relief operations for distress mitigation become difficult. So it is imperative that advance action is<br />

taken for relief measures before the commencement of adverse weather conditions due to cyclones.


2.6<br />

The most destructive element associated with an intense cyclone is storm surge. Past history<br />

indicates that loss of life is significant when surge magnitude is 3 metres or more <strong>and</strong> catastrophic<br />

when 5 metres <strong>and</strong> above.<br />

As mentioned in the previous section, cyclones have resulted in rather high damage, especially to the<br />

coastal areas. A list of the available data on losses due to cyclones in West Bengal has been<br />

provided by the Department of Relief, Government of West Bengal, <strong>and</strong> is attached as Annex – I.<br />

The cause of losses in rural <strong>and</strong> urban areas due to tropical cyclones is presented in the following<br />

sections.<br />

There are secondary hazards too. Some of these are:<br />

• Spread of epidemics – The wet environment in the aftermath of a tropical cyclone,<br />

combined with the destruction of sanitation facilities <strong>and</strong> a warm tropical climate, can<br />

induce epidemics of disease which claim lives long after the storm passes. Infections of<br />

cuts <strong>and</strong> bruises can be greatly amplified by wading in sewage polluted water. Large<br />

areas of st<strong>and</strong>ing water caused by flooding also contribute to mosquito-borne illnesses.<br />

Drinking water also gets polluted resulting in diseases like gastro-enteritis.<br />

• Power cuts – Tropical cyclones often knock out power to an area prohibiting vital<br />

communication <strong>and</strong> hampering rescue efforts.<br />

• Damages to communication links – Tropical cyclones often destroy key bridges,<br />

overpasses, <strong>and</strong> roads, complicating efforts to transport food, clean water, <strong>and</strong> medicine<br />

to the areas that need it.<br />

2.3. Areas under the threat of damage from tropical cyclones<br />

The regions of West Bengal that may suffer the possible impact of tropical cyclones come belong to<br />

the following districts:<br />

1. East Midnapore<br />

2. 24 Parganas-South<br />

3. 24 Parganas-North<br />

4. Howrah<br />

5. Hooghly<br />

Of course, the areas prone to devastation under each district vary according to the location. For<br />

example, the Blocks along the coastal region of West Bengal (Figure 2-5), being low lying, are


2.7<br />

affected most. Here, the the l<strong>and</strong>fall of the cyclone occurs <strong>and</strong> the dangers of inundation by storm<br />

surges as well as destruction of low-cost houses due to strong winds reign supreme. Also, the<br />

geographical location of this region is such that it has high chances of cyclone l<strong>and</strong>fall. Though the<br />

Blocks of the East Midnapore are as close to the Bay of Bengal as those of the 24 Parganas-South,<br />

the alignment of the coastline here <strong>and</strong> the geographical location makes the probability of l<strong>and</strong>fall<br />

rare. Of course, the rise in ocean level caused by a storm track grazing close by, may nevertheless<br />

cause inundation. Some portions of the Districts of 24 Parganas-North <strong>and</strong> Howrah though not<br />

coming very close to ocean, still suffer from the impending threat of river level rise due to a rise of the<br />

ocean level caused by a cyclone induced storm surge. The District of Hooghly is much inl<strong>and</strong>, but as<br />

the event of 1737 had proved, a probable track of a tropical cyclone being incidentally aligned with<br />

the axis of the river Hooghly may cause a violent upsurge, especially since the water rushing up from<br />

the estuary would have to move up through the river where the width is relatively narrow.<br />

In most of the Blocks in the coastal West Bengal, <strong>and</strong> especially in the District of 24 Parganas-South,<br />

the l<strong>and</strong> is rather low lying <strong>and</strong> the habitation areas along with the neighbouring agricultural fields are<br />

protected by embankments. The adjoining region to the east is the world famous mangrove forest of<br />

the Gangetic delta – The Sundarbans. In order to appreciate the magnitude of the cyclonic hazard<br />

<strong>and</strong> the means adopted to mitigate consequential damages, it is necessary to review the<br />

geographical <strong>and</strong> historical situations in these areas before <strong>and</strong> after the establishment of substantial<br />

habitation from its pristine characteristics of a marshy <strong>and</strong> swampy l<strong>and</strong>.<br />

The State capital Kolkata also falls in the cyclone prone region, as stated before. However, the urban<br />

characteristics of Kolkata <strong>and</strong> its surroundings distinguish the damages here from that of the typical<br />

rural countryside of the Districts. The types of problems facing Kolkata <strong>and</strong> its neighbouring urban<br />

regions have been discussed separately in Chapter 3. In the present chapter, discussion is restricted<br />

to the region other than Kolkata.<br />

2.3.1. Geographical extent<br />

The coastal region of the State of West Bengal is prone to the effects of cyclonic storms. Broadly, the<br />

West Bengal coast can be divided into two parts, on either side of the mouth of the river Hooghly.<br />

This may be seen from Figure 5 which illustrates the Development Blocks of the districts of Medinipur<br />

east <strong>and</strong> 24 Parganas South that hug the Bay of Bengal. Towards the east are the Gangetic deltaic<br />

tracts which are mostly shoals, s<strong>and</strong> spits, mud flats <strong>and</strong> tidal swamps <strong>and</strong> flats <strong>and</strong> towards the east<br />

are the Medinipur coastal plains which comprise of mostly s<strong>and</strong>y beaches. The geophysical nature of


2.8<br />

the two regions is rather different. Further, the nature of the action of cyclonic storm surge depends<br />

upon the geophysical characteristics of the coastline or the estuarine bank-line.<br />

Figure 2-5. Coastline of West Bengal showing the different Blocks touching Bay of Bengal<br />

Physiographically, the coastal plain of West Bengal may be said to consist of the following five<br />

different types of features: (i) Beaches, spits <strong>and</strong> barriers; (ii) Coastal s<strong>and</strong> dunes; (iii) Coastal<br />

wetl<strong>and</strong>s; (iv) Coastal lowl<strong>and</strong>s; <strong>and</strong> (v) Coastal plains, estuaries, tidal inlets <strong>and</strong> lagoons (Paul<br />

2002). Each of the physiographic regions is characterized by several morphological features evolved<br />

under the impact of coastal hydrodynamics, available sediment supply <strong>and</strong> transportation paths, selfcompaction<br />

of sediments, sub aerial processes, changes in relative level of l<strong>and</strong> <strong>and</strong> sea, etc.<br />

According to Chakrabarti (2006), in West Bengal two contrasting coastal environments are present:<br />

(a) the Macrotidal Hooghly estuary <strong>and</strong> (b) the Mesotidal Midnapore coastal plain in the east <strong>and</strong><br />

west respectively of the River Hooghly:<br />

• Macrotidal (tidal range > 4m) Hooghly estuary — the bell or funnel shaped Hooghly river<br />

mouth characterized by a group of isl<strong>and</strong>s set in a labyrinth of tidal creeks marking their<br />

outlines. This macrotidal domain with bidirectional tidal currents is marked by the presence of<br />

'sickle-shaped' near offshore configuration with partially or totally emerged linear tidal shoals


2.9<br />

(aligned perpendicular to the shoreline) separated by intervening swales e.g. Jambudwip <strong>and</strong><br />

Chuksardwip.<br />

• Mesotidal (tidal range: 2—4m) Midnapore (Digha—Junput) coastal plain to west of the<br />

Hooghly estuary. Successive rows of dunes with intervening clayey tidal flats are<br />

characteristically present in the coastal plain.<br />

The “Ancient dune complex” all along the Midnapore coastal plain (about 10 to 15 km north of the<br />

present shoreline) indicates the position of the “Ancient str<strong>and</strong> line” in the area. The C 14 dating of<br />

sediments from “Ancient fluvio-tidal flat” (5760±140 YBP) present in the north of the “Ancient dune<br />

complex” confirms that the higher str<strong>and</strong> line in the post-glacial (Holocene) period is at present<br />

represented by the “Ancient dune complex” which is around 6000 YBP – the optimum of the<br />

Fl<strong>and</strong>rian transgression (Selby, 1985). The C 14 dating of sediments from “Ancient intertidal flat” (just<br />

south of the “Ancient dune complex”) gives an age of 2920±160 YBP which indicates the first<br />

punctuation in the regression of the Holocene sea in the area under consideration.<br />

The “Ancient dune complex” does not extend in the eastern part of the Hooghly river. Careful<br />

analysis of the satellite imagery reveals the presence of a morpho-structural lineament in the same<br />

alignment as that of the aforesaid dune belt <strong>and</strong> passes just north of Sagar Isl<strong>and</strong>, through Kakdwip,<br />

in a north-easterly direction towards Bangladesh separating the lower deltaic plain of Ganga-<br />

Brahmaputra (within India) into two sectors, as mentioned below:<br />

The areas to the south of this line are characterised by the presence of isl<strong>and</strong>s (draped with<br />

mangroves) separated by an network of active tidal creeks,<br />

The areas to the north of this line are almost free from such network embroidery of tidal creeks <strong>and</strong><br />

isl<strong>and</strong>s. The Sundarban falls in the first group occupying the area south of the lineament. In Hooghly<br />

estuary, in the south of this morpho-structural lineament, the sticky grey clay of inter-distributary<br />

mangrove marsh unit (equivalent to the “Ancient intertidal flat” unit of Midnapore coastal plain) is<br />

characterised by the brackish water mangrove bio-assemblages (for example Ceriops, Rhizophora,<br />

Chenopodiaceae, Heriteria, Gramine (Poaceae), Palmae (Aricaceae), Circulisporites etc.). The C14<br />

dating of this clay sample from Namkhana giving an age of 3170±70 YBP <strong>and</strong> 2900±20 YBP from<br />

Gangasagar indicates the progressive southward shifting of coastline towards the present shoreline<br />

in recent past.<br />

We briefly discuss each of these coastal zones <strong>and</strong> the vulnerability due to cyclonic hazards in the<br />

following sections.


2.10<br />

2.4. The eastern coastal zone – the Sundarbans<br />

The Sundarbans consists of the Coastal belt of the Bay of Bengal on the Southern most fringe of the<br />

State of West Bengal <strong>and</strong> Bangladesh, It forms part of the Gangetic Delta which has been built<br />

primarily by the silt, carried down by the Ganga <strong>and</strong> Brahmaputra river system bounded by river<br />

Hooghly on the west <strong>and</strong> Padma - Meghna on the east. The l<strong>and</strong> is very fertile. The total expanse of<br />

the Sundarbans is above 2.07 Million Hectares out of which only 38.54 percent, that is, 0.791 Million<br />

Hectares lie in India <strong>and</strong> the rest in Bangladesh.<br />

The Sundarbans area is situated in the Southern portion of the District of 24-Parganas bounded by<br />

the river Hooghly on the west, Bay of Bengal on the South <strong>and</strong> Ichhamati-Kalindi-Raimangal river<br />

system on the east bordering Bangladesh. The northern boundary was demarcated from the rest of<br />

24-Parganas district in 1831 by Survey of India by means of what is known as the Dampier-Hodges<br />

Line, This line runs a slightly zig-zag course from Ichhamati near Basirhat in the North-east to the<br />

Hooghly near Kulpi in the South-west.<br />

Figure 2-6. The Sundarbans of West Bengal – reclaimed areas <strong>and</strong> the existing forest areas<br />

(From Paul, 2002)


2.11<br />

2.4.1. Physical features<br />

The major portion of South Bengal including the Sundarban had been formed mainly by the service<br />

tendered by the magnificent river Ganga in transporting millions tons of silt every year from the<br />

Mighty Himalayas through the Bhaqirathi Hooghly channel. L<strong>and</strong> was formed at the head of delta due<br />

to deposition of silt in suspension when the strong current in the river is checked by coming in contact<br />

with the sea. Ganges like other delta builders, began to approach the sea in several diverging<br />

branches enclosing the intersecting the delta already built so as extend it towards the sea by<br />

dropping their silt load near about their mouths. But the raising would have beer, exceedingly slow as<br />

floods occur only in limited period during the monsoon. Hence Nature has requisitioned the service of<br />

tide who pick up vast reservoir of unconsolidated silt at their mouths almost to the saturation point<br />

<strong>and</strong> flow inl<strong>and</strong> twice a day during flood tide through out the year <strong>and</strong> drops a part at low velocity<br />

stage on the entire basin below tide level <strong>and</strong> within tide limits <strong>and</strong> thus raise the delta already built.<br />

The process of delta building was very high for the two following factors -<br />

i) The steep slope of the Himalays, the highest mountain in the world which aided by the<br />

torrential character of the rain <strong>and</strong> the rather indifferent conditin of the catchment basin has<br />

been furnishing the building material in abundance during the monsoon.<br />

ii)<br />

The abnormally high tidal range due to the funnel shape of the Bay of Bengal which has been<br />

helping in distributing these materials twice daily throughout the year. But, silt is less in<br />

winter season particularly.<br />

The formation of delta in Southern Bengal continued at a very fast rate upto 12th Century. Between<br />

the l2th <strong>and</strong> 16th centuries A.D., the main course of the Ganga fluctuated between the Bhagirathi-<br />

Hooghly <strong>and</strong> the present course further eastwards called the Padma, <strong>and</strong> from the 16th century<br />

onwards the Padma has become the main course. With this diversion of the main Ganga through the<br />

Padma, all the branches of the Ganga Bhagirathi system in this region, which were carriers of silt<br />

were deprived of their head water supply except during the few monsoon months. As such these<br />

rivers have lost their role in building the delta. At the moment, new l<strong>and</strong> formation is dependent on<br />

tides. The old river channels excepting Hooghly exist as tidal creeks with the additional function as<br />

drainage carriers of the area.<br />

2.4.2. Topography<br />

The depth of silt deposited by upl<strong>and</strong> floods is the maximum close to the river banks where the


2.12<br />

velocity is first checked. As the spilling proceeds away from the river banks, the silt content of the<br />

spilled water <strong>and</strong> consequently the depth of silt deposited is less <strong>and</strong> less. The area lying midway<br />

between two adjacent flood carriers is lower than the two banks. But the tides by their constant<br />

movement distribute the unconsolidated silt charge uniformly over the entire basin <strong>and</strong> raise the<br />

inside valley almost to same level as that the bank. Thus the general topography is very flat.<br />

The North Eastern area (Haroa-Minakhan-S<strong>and</strong>eshkhali) area being close to Calcutta had been<br />

prematurely reclaimed much earlier than the south West area (Kakdwip – Sagar – Pathar-protima<br />

area) by marginal embankment <strong>and</strong> hence has been deprived of natural raising by flood <strong>and</strong> tide.<br />

The average ground level in above mentioned North-eastern <strong>and</strong> South-Western area is around 1.2m<br />

<strong>and</strong> 2.0m above Mean Sea Level respectively against mean high water level of 2.75m (H.F.L at sea<br />

wall zone is approximately 3.5m).<br />

2.4.3. Rainfall, Temperature <strong>and</strong> Humidity<br />

The total average rainfall in the area is 1625 mm. In some abnormal years this exceeds 2000mm <strong>and</strong><br />

in some subnormal years it is as low as 1300 mm. South Westerly Monsoon generally breaks up on<br />

8th June <strong>and</strong> recedes on 20th October. Approximately 73.2 percent of the annual rainfall occurs in 53<br />

days within 124 days monsoon season. Though the maximum daily rainfall during the monsoon<br />

seldom exceeds 300 mm a rainfall of as high as 800 mm in a period of four consecutive days was<br />

recorded in September, 1900. The pattern of rainfall in the district of 24-Parganas (North <strong>and</strong> South)<br />

where Sundarban is situated is given in Table 2-2 below: -<br />

Table 2-2. Average monthly precipitation in Sundarban area of West Bengal<br />

Month<br />

Average monthly rainf Monthly rainfall<br />

(mm)<br />

percentage<br />

average Rainfall<br />

Average Rainy days<br />

month<br />

January 5.59 0.3 0.49<br />

February 19.05 1.2 0.45<br />

March 34.80 2.1 1.78<br />

April 63.00 3.9 1.73


2.13<br />

May 126.00 7.8 4.98<br />

June 260.10 16.0 11.55<br />

July 358.65 22.1 15.27<br />

August 326.14 20.1 13.55<br />

September 243.31 15.0 12.26<br />

October 130.60 8.0 6.38<br />

November 51.56 3.2 2.05<br />

December 6.09 0.4 0.50<br />

Total 1625.09 100.0 71.0<br />

The mean maximum <strong>and</strong> minimum temperatures are about 32°C <strong>and</strong> 15.7°C occurring in May &<br />

January respectively. The temperature begins to rise from early February & starts falling from mid-<br />

October. Southerly winds start blowing from the middle of March <strong>and</strong> Nor’westers make their<br />

appearance in April <strong>and</strong> May. The humidity is about 86 percent of saturation from mid-June to mid-<br />

October <strong>and</strong> is about 75 percent in winter.<br />

2.4.4. Winds<br />

Strong winds provoke two phenomena: wind set-up <strong>and</strong> wind waves. Long lasting wind, blowing in<br />

the same direction, like the monsoon, leads to a raise of the mean sea level near the lee-side coasts,<br />

which increases the high water levels but also the low water levels. This phenomenon is known as<br />

wind set-up. Usually the tidal amplitudes reduce when the mean sea level rises.<br />

The long lasting wind causes a water flow in the direction of the wind near the surface which in turn<br />

results in a flow in the opposite direction near the bottom. This return flow near the bottom carries<br />

sometimes significant volumes of silt towards the sea.<br />

Another phenomenon is the wind waves. These waves develop on top of the wind set-up. They are<br />

not only formed at sea but also in the wide sections of the network of waterways in the Sundarban<br />

area. The height of the waves depends on the velocity of the wind, the fetch; this is the length the<br />

wind skims over the water surface, <strong>and</strong> to a lesser extent on the water depth, assuming that the<br />

duration of the wind is long enough to allow the waves to be fully developed.


2.14<br />

Strong winds known as cyclones occur along the coasts of West Bengal <strong>and</strong> Bangladesh. Most of the<br />

tropical cyclones manifest themselves in April/May or October/November. Wind velocities of 200<br />

km/hour can occur during strong cyclones. The wind velocity reduces rather fast when it blows over<br />

l<strong>and</strong>. This is discussed I n the next section.<br />

When the wind waves reach the coast there are two effects that can cause damage to the shore or to<br />

the embankments built by mankind to protect the l<strong>and</strong>. The first effect is known as wave rush-up. By<br />

the force of the waves water is rushing up the slopes to a higher level than the level of the top of the<br />

waves in open water. The second effect is wave dash. Water is smashed with force against the slope<br />

of the natural or artificial embankment which might cause damage to these slopes <strong>and</strong> eventually the<br />

entire embankment.<br />

2.4.5. Cyclonic storms<br />

The reasons for the development of tropical cyclonic storms are many amongst which the most<br />

important is the prevalence of moist warm winds. Hence they occur mostly during the period front<br />

April to the end of November when South westerly winds blow more or less steadily over the Bay.<br />

Cyclonic storms grow gradually till the maximum intensity is reached. The depth of the lowest<br />

barometric pressure <strong>and</strong> the extent of the wind field are the most important parameters influencing<br />

this intensity. Some stormy extend over a wide area but have only a weak pressure gradient while<br />

others are more concentrated over a small area but have a great pressure gradient. High wind<br />

velocities occur only in, regions of limited extent along the storm track through which the cyclone<br />

passes.<br />

The wind pressure causes an upsurge of the water levels <strong>and</strong> lead to high water levels much higher<br />

than the predicted High Water 1evel based on tidal influence. As such cyclone storms <strong>and</strong> the<br />

resultant surge levels are very important from the hydraulic point of view in as much as they influence<br />

the levels up to which water may rise <strong>and</strong> the levels up to which protection is desired severe cyclones<br />

may cause heavy devastation especially if the storm surge occurs in synchronisation with high tides.<br />

The high waves generated attack the shore <strong>and</strong> embankments at great velocities. The most severe<br />

cyclone within recorded memory occurred in October 1942 when there occurred wide devastation<br />

along the West Bengal coast. The maximum wind speed recorded during this storm was about 165<br />

km per hour in Sagar Isl<strong>and</strong>. The maximum height of water level was about 3.5 meters above the<br />

predicted high water level <strong>and</strong> about 2 Meters above the highest high water level recorded during<br />

other storms. This storm is of course one of an extremely rare occurrence.


2.15<br />

During the months of November to May depressions are formed in the lower region of the Bay <strong>and</strong><br />

hence rarely reach the coast of the Sundarbans. The period during which cyclone storms affect<br />

Sundarbans is between June <strong>and</strong> October out of which October is the most dangerous month of the<br />

year when South West monsoon starts receding <strong>and</strong> North West wind starts stepping in.<br />

Most of the tropical cyclonic storms cross the shore having average speeds varying between 25 <strong>and</strong><br />

75 km per hour. During the 60 years from 1907 to 1966 there were as many as 108 tropical cyclonic<br />

storms of velocity above 25 km per hour crossing the Sundarbans coast. The wind – speed wise <strong>and</strong><br />

month – wise distribution is as given in Tables 2-3 <strong>and</strong> 2-4.<br />

Table 2-3. Wind statistics recorded at Sagar Isl<strong>and</strong><br />

Wind speed in Number of Occurrenc Percentage<br />

km per hour<br />

25 31 29<br />

50 30 28<br />

75 25 23<br />

100 11 10<br />

125 10 9.9<br />

150 1 0.1<br />

175 - -<br />

Total 108 100<br />

Table 2-4. Number of occurrences of tropical cyclonic storms at West Bengal coast<br />

Month Number of Occurrence Percentage<br />

January 0 0<br />

February 0 0<br />

March 0 0<br />

April 0 0<br />

May 4 4<br />

June 9 8<br />

July 28 26<br />

August 31 29<br />

September 16 14.5<br />

October 17 15.5<br />

November 3 3<br />

December 0 0<br />

Total 108 100


2.16<br />

2.4.6. Soil characteristics<br />

The area is covered with alluvium which is of great depth, Soil is heavy clay impregnated with salt.<br />

The deposit is made up of washing as a result of denudation of the Himalayas. Deep boring indicate<br />

that the alluvium consists of alternate b<strong>and</strong>s of clay, s<strong>and</strong> <strong>and</strong> silt together with a few b<strong>and</strong>s of<br />

gravel. Excavations <strong>and</strong> borings have revealed in some places the debris of ancient forests.<br />

The soil in the Sundarbans can be classified into four categories, viz:<br />

• Clayey Soil (Matial)<br />

• Loamy soil ( Doash)<br />

• S<strong>and</strong>y Soil (Balia)<br />

• Saline Soil (None)<br />

Clayey soil (Matial) is the most predominant <strong>and</strong> is of great natural fertility on which all kinds of crops<br />

are grown. Winter rice is grown in abundance in this soil. Loamy soil (Doash) is a mixture of lay <strong>and</strong><br />

s<strong>and</strong>. It is also suitable for agriculture particularly for Rabi crops <strong>and</strong> Sugar cane as it retains<br />

moisture for a long, time. In s<strong>and</strong>y loam (Balia) the proportion of s<strong>and</strong> exceeds that of clay <strong>and</strong> is<br />

suitable for Aus rice <strong>and</strong> potato. Saline soil (Nona) is generally wet <strong>and</strong> is not suitable for cultivation<br />

of crops. It only bears Ulu grass used for thatching.<br />

2.4.7. River system<br />

The whole of the Sundarbans area is interspersed with an intricate network of crisscrossing channels<br />

<strong>and</strong> creeks, big or small which divide the area into large number of isl<strong>and</strong>s. These channels<br />

ultimately find their way to the Bay of Bengal through one or other principal estuaries. Starting from<br />

the west these are the following:<br />

Hooghly - It gets a partial discharge of Ganga through<br />

Farakka Barrage as also the run-off Western rivers<br />

such as Mayurakshi, Ajoy, Damodar etc.<br />

Baratala or Muriganga - A branch of Hooghly carrying about 16 percent of<br />

upl<strong>and</strong> discharge of Bhagirathi-Hooghly which<br />

separates Sagar Isl<strong>and</strong> from main Sundarbans.


2.17<br />

Saptamukhi : - Purely tidal river<br />

Thakuran - -do-<br />

Matla - The River Bidyadhari which served as an Outfall<br />

channels for the storm water & sewage of Calcutta<br />

in the post <strong>and</strong> is completely dead now forms the<br />

upper reach of Matla. Now it is purely tidal river.<br />

Gosaba - Purely tidal river<br />

Haribhanga - -do-<br />

Raimangal - Previously it used to receive upl<strong>and</strong> discharge of<br />

Ganga through its branch 'Jamuna' which had been<br />

purely cut of since 16th century. Now it is<br />

practically a tidal river.<br />

Figure 2-6. The major rivers of Sundarbans in West Bengal


2.18<br />

All rivers have in general southerly course towards sea. Some of the above major rivers braids into<br />

more than one channel before meeting the sea. Except river Hooghly <strong>and</strong> river Baratala all rivers are<br />

actually tidal waterways without any upl<strong>and</strong> discharge expecting run off of small localised catchment<br />

<strong>and</strong> their water is as salty as the sea.<br />

Between the large estuaries <strong>and</strong> rivers are innumerable streams <strong>and</strong> water courses called khals,<br />

forming a net-work of channels, some ending ultimately in little channels that serve to draw off the<br />

water from each block of l<strong>and</strong>. Each block is formed like a saucer with high ground along the bank of<br />

the Khals surrounding it, <strong>and</strong> with one or more depressions in the middle. The rain water in the block<br />

is drained off by the little khals into the larger khals <strong>and</strong> ultimately to the Sea through the rivers during<br />

Ebb tide, conversely when the water swells in the rivers during Flood tide it floods the country<br />

through the same channels. Many of the khals connect two large ones, <strong>and</strong> consequently the tide<br />

flows into them through both ends. Such khals are called “Do-Aniya" Khals. They are very useful as<br />

affording communication between the larger khals, but have one serious defect that they are liable to<br />

silt up at the point where the two tides meet, for the water in always still there.<br />

Even the major rivers in the Sundarban region flowing East of the Hooghly river have relatively small<br />

catchment areas <strong>and</strong> consequently the discharges from the hinterl<strong>and</strong>s are small in comparison with<br />

the volumes of water which flow in <strong>and</strong> out each tide. Therefore, the currents in the maze of rivers<br />

<strong>and</strong> creeks of the Sundarban Region are almost entirely the results of the fluctuation of the sea level<br />

in the Bay of Bengal <strong>and</strong> the way these fluctuations propagate themselves within the system of<br />

waterways of the delta.<br />

2.4.8. Tides<br />

Tides are generated in the Bay of Bengal by the forces of attraction of mainly the sun <strong>and</strong> the moon<br />

upon the rotating earth. The effect of tide is manifested in a regular alteration of rise <strong>and</strong> fall of the<br />

water level of the sea <strong>and</strong> the estuarine channels <strong>and</strong> creeks, with the advent of rising tide, the water<br />

level of the Sea Starts rising gradually <strong>and</strong> steadily till a highest level known as the “High Water<br />

Level” (HWL) is attained. This rising phase of the tide is called the “Flood tide” or the “Flow tide”.<br />

After the attainment of HWL the tide water level starts falling gradually <strong>and</strong> steadily till a lowest water<br />

level (LWL) is reached. This falling phase of the tide is called “Ebb tide”. Thereupon the tide water<br />

starts rising once again till the occurrence of the next HWL <strong>and</strong> so on. The difference in elevation<br />

between a HWL <strong>and</strong> the next LWL is called the “Tidal range” <strong>and</strong> the period intervening any two


2.19<br />

consecutive HWL or LWL is termed the “Period of Tidal Circle” which is on averages is 42 hours 24<br />

minutes, The tidal cycles are represented graphically by tidal curve.<br />

With the advent of flow tide, the velocity of current which is in the inl<strong>and</strong> direction starts increasing,<br />

reaches a maximum at about the middle of the flow tide <strong>and</strong> beginning to decrease thereafter being<br />

zero at the HWL which is known as “High Water Slack”. Thereupon, the ebb tide commences <strong>and</strong> the<br />

current velocity which is in the seaward direction starts increasing once again <strong>and</strong> after attaining a<br />

maximum value begins to diminish gradually becoming zero at LWL which is known as the “Low<br />

water Slack”. Two tides called “Semi-diurnal tides” occur in course of every lunar day. The tidal<br />

ranges of the two semi-diurnal tides are also found to differ from each other. Table 2-5 gives the list<br />

of highest High Water Level (HWL) recorded at Sagar Isl<strong>and</strong>s.<br />

Table 2-5. Year-wise High Water Levels (HWL) at Sagar Isl<strong>and</strong> for the period from 1934 to 1976.<br />

All levels are in Meters <strong>and</strong> refer to G.T.S. Datum.<br />

Year H.W.L. YEAR H.W.L.<br />

1934 3.47 1956 4.33<br />

1935 3.72 1957 3.92<br />

1936 3.77 1958 3.92<br />

1937 3.47 1959 3.74<br />

1938 3.51 1960 3.64<br />

1939 3.72 1961 3.72<br />

1940 3.44 1962 4.11<br />

1941 3.41 1963 3.64<br />

1942 5.61* 1964 3.79<br />

1943 3.57 1965 3.62<br />

1944 3.59 1966 3.59<br />

1945 3.62 1967 3.45<br />

1946 3.36 1968 3.05<br />

1947 3.41 1969 3.14<br />

1948 3.51 1970 3.45<br />

1949 3.72 1971 3.36<br />

1950 3.77 1972 3.63<br />

1951 3.57 1373 3.13<br />

1952 3.92 1274 3.13<br />

1953 3.95 1975 3.25<br />

1954 3.74 1976 3.61**<br />

1955 3.69<br />

* The H.H.W.L. of 1942 could not be recorded on the gauge but was estimated from flood marks.<br />

** The H.H.W.L. of 1976 during the severe cyclone of September 1976 could not be recorded on the<br />

gauge <strong>and</strong> the stated value excludes the H.H.W.L. of September.


2.20<br />

Another interesting feature of tides lies in the fact that the tidal range at any location fluctuates<br />

steadily <strong>and</strong> gradually from day to day in accordance with the lunar phase. The tidal range at the full<br />

<strong>and</strong> new moons is found to the maximum. This phase is called the "Spring Tide". After the<br />

occurrence of the spring tide at Full moon or New Moon the tidal range starts diminishing till the<br />

occurrence of the Neap Tide at the middle of moon cycle when the tidal range is the minimum.<br />

The tidal curve at the sea face of a tidal estuary in Bay of Bengal is found to have a symmetrical<br />

harmonic shape. The periods of both flow <strong>and</strong> Ebb tide being practical1y equal. As it goes upwards,<br />

the period of Ebb tide increases more than the low tide. Thus the f low velocities are more than the<br />

subsequent Ebb velocities along the tidal channel as one proceeds upwards. There is another<br />

interesting point in this connection: the tidal range starts increasing steadily <strong>and</strong> gradually upwards<br />

from the sea face, attains maximum value at the certain points <strong>and</strong> starts diminishing thereafter till at<br />

the terminal point of tidal propagation it becomes practically nil.<br />

The water levels at the confluences of the major rivers with the sea are constantly changing due to<br />

the tides. These changes propagate into the Sundarban not only along their own courses but also<br />

along the many bifurcations, changing with varying time-lags the water levels at both ends of each<br />

river - or creek section, initiating a pattern of flows in the various waterways.<br />

Due to erosion <strong>and</strong> sedimentation the average depth of many sections of the system of waterways<br />

change; some sections will become deeper others less deep. A change of the size <strong>and</strong> the shape of<br />

any individual section do not only change the flow through this section, it will also alter the pattern of<br />

water movements during the process of filling <strong>and</strong> emptying the live storage of the Sundarbans. The<br />

following case studies have been taken from Kanjilal (2006).<br />

An example of this can be seen presently in the Bidya river. There is a strong sedimentation in the<br />

section of this river from its confluence with the Gomar river till the confluence with the rivers Kartel<br />

<strong>and</strong> Durgadoani. Because of this the propagation velocity in this section is reduced <strong>and</strong> dur-ing rising<br />

tide the water level near the latter confluence will rise slower than it did before. Due to this a larger<br />

difference in water level is created not only in this section of the Bidya river but also in the Kartel <strong>and</strong><br />

the Durgadoani river. The slope in all three sections is increased.<br />

As a result of the reduced wetted cross-section of the discussed part of the Bidya river, this extra<br />

slope will not lead to a larger discharge; the discharges of the two other rivers increase however. Due<br />

to this the erosion in those rivers became stronger <strong>and</strong> is endangering the stability of the river banks.<br />

This is significant near the market place at Basanti <strong>and</strong> at many other places along both rivers.


2.21<br />

Considering all the interdependencies in relation to the distribution of the flows over the many river<br />

sections, proposed human interventions to alter or to stabilize the course, the size <strong>and</strong> the shape of<br />

any section should not only be valued on their effects on the local situation <strong>and</strong> their sustainability but<br />

also on the changes these interventions might initiate in the pattern of flows <strong>and</strong> discharges in the<br />

adjacent river sections.<br />

At present not much information is available about the configuration, the fluctuations of the water<br />

levels <strong>and</strong> the pattern of flows which are the results of the combination of storage <strong>and</strong> the<br />

propagation of the tide.<br />

Whatever the configuration of the maze of waterways might be <strong>and</strong> whatever the sizes <strong>and</strong> the<br />

shapes of the river sections might have, their various average depths are smaller during low tide than<br />

during high tide. Incoming tide starts with certain depths <strong>and</strong> these depths will increase till the end of<br />

the incoming tide. With outgoing tides however the depths will become less from its start till its end.<br />

Due to this <strong>and</strong> the effects on the propagation velocity, the period of incoming tide will become<br />

shorter <strong>and</strong> the outgoing tide will become longer for the river sections according as their distance to<br />

the sea. As the volumes that are moving in <strong>and</strong> out are about equal, the incoming currents are<br />

stronger than the outgoing for all sections except those very close to the sea; where the currents are<br />

equally strong. This phenomenon is important for the process of erosion <strong>and</strong> sedimentation in the<br />

estuary.<br />

2.4.9. Role of tidal channels<br />

The energy which creates the tidal flow, viz. attraction of the sun <strong>and</strong> the moon in the deep sea, is<br />

manifested partly as potential energy viz. rise in tide level <strong>and</strong> partly as Kinetic energy viz. velocity of<br />

flow. The formal causes the tidal flow up the rivers <strong>and</strong> the latter determines its power of transporting<br />

silt. As the velocity of tide when it enters the mouths of these tidal rivers is high <strong>and</strong> as there is a vast<br />

reservoir of unconsolidated silt in suspension along the delta-face, the tide as it flows up these rivers,<br />

is highly charged with silt. The duration of Ebb tide in a tidal river is much longer than that of the flow<br />

tide in upper reach. Hence the average velocity of Ebb is less than that of the flow. Thus the Ebb tide<br />

is unable to transport back fully the silt carried by flow tide. Even a slight deposition of the silt will go<br />

on accumulating as the tides function twice daily through out the year. Thus the tide channels<br />

perform the most important function of raising the delta up to highest tide level <strong>and</strong> made fit for<br />

human habitation unless there is human interference. If the tidal channels <strong>and</strong> creeks are allowed to<br />

perform their above responsibility of raising l<strong>and</strong> to optimum elevation the drainage of the l<strong>and</strong> thus


2.22<br />

formed does not pose so much of an acute problem.<br />

Water flows into the Sundarbans during rising tide as long as the water levels in the areas accessible<br />

for the incoming tides, to wit: the rivers <strong>and</strong> the unprotected l<strong>and</strong>s are lower than sea level. Like-wise<br />

water flows to the sea as long as the water in the system of waterways <strong>and</strong> unprotected areas is<br />

higher than sea level.<br />

The volume of water that flows into the estuary of a river <strong>and</strong> on the inundated l<strong>and</strong> is that held<br />

between high water <strong>and</strong> low water levels. The volume of this layer is usually indicated as the "live<br />

storage" of the system. The "dead storage" is the volume of water that remains in the rivers <strong>and</strong><br />

creeks at the end of ebb period.<br />

When water starts flowing in, the volume of water indicated as the dead storage is pushed inwards.<br />

This water will fill in the live storage situated at the l<strong>and</strong> side of the estuary. Fresher water from the<br />

sea mixes with older water from the dead storage, but this process takes only place in a limited zone.<br />

As a result of which, the water at the far end of the system is replaced only very slowly by new water<br />

from the sea. A large portion of water moves oscillates within the rivers, without leaving the estuary.<br />

The larger the dead storage is in comparison with the live storage, the larger the volume that remains<br />

in the system for series of tides. This is of importance for the process of erosion <strong>and</strong> sedimentation in<br />

the Sundarban.<br />

The shape of the volumes of the creeks, channels <strong>and</strong> the tidal flats of the Sundarbans, providing the<br />

live <strong>and</strong> the dead storage is very irregular. These may be thought of as a series of reservoir sections<br />

connected to each other through channels. These channels, of course, also contribute to the storage.<br />

The larger the live storage of any section to be filled through one or more canals, the more water is<br />

flowing in <strong>and</strong> out through these canals with each tide.<br />

When the live storage is reduced because of sedimentation or because of human interventions like<br />

blocking creeks or building embankments around areas presently inundated, less water needs to flow<br />

to <strong>and</strong> fro in the river sections feeding this part of the reservoir. When the dead storage of a river is<br />

reduced by sedimentation, the wetted area will also be reduced <strong>and</strong> consequently the current in<br />

these rivers needs to increase to allow the same volume of water to pass. In general it can be stated<br />

that a reduction of the live storage will reduce the incoming <strong>and</strong> outgoing volumes <strong>and</strong> that reduction<br />

of the dead storage increases the velocities.


2.23<br />

2.4.10. Flora <strong>and</strong> fauna<br />

The Natural Forest Resources consists of the mangrove forests which constitute a major resource in<br />

terms of the area, density <strong>and</strong> diversity of mangrove species they contain. In this Division the forest<br />

area consists of many low flat isl<strong>and</strong> called locally as "Char L<strong>and</strong>' <strong>and</strong> mud banks separated by a<br />

network of anastomotic channels <strong>and</strong> rivers, the courses of which are very much prone to frequent<br />

alteration. There is a dynamic state of erosion in some areas <strong>and</strong> creation of new mud banks <strong>and</strong><br />

char l<strong>and</strong> in others.<br />

The vegetative colonisation of newly formed l<strong>and</strong> follows the pattern of natural succession. At first,<br />

pioneer species establish on the site. In the case of mangroves, the seeds of these species are<br />

dispersed by water, floating in on the high tides <strong>and</strong> lodging in the soft mud as the tide recedes.<br />

Species of Avicennia, Rhizophora, <strong>and</strong> Sonneratia are the typical mangrove pioneers. These<br />

pioneers are adapted to the diurnal inundation by the tides, <strong>and</strong> in fact, depend upon it. As they grow<br />

they induce further sedimentation by reducing the velocity of water flowing past <strong>and</strong> trapping silt. As<br />

the sedimentation build up <strong>and</strong> the duration <strong>and</strong> frequency of inundation reduces, other species like<br />

Bruguieria, Xylocarpus, Exoecaria etc, are established. Like other natural forest succession, the<br />

pioneers are comparatively faster growing but shorter living than species coming later ion the<br />

sucession.<br />

Where the accretion of the sediment reaches a level where the tidal inundation is rare, the vigor <strong>and</strong><br />

regenerative capacity of the mangrove species fade away. These types of l<strong>and</strong> tend to become<br />

dominated by a low thicket palm like Phoenix paludosa. Besides the frequency <strong>and</strong> duration of tidal<br />

inundation, salinity level plays a major role in influencing the occurrence of mangrove species. As a<br />

result of change in salinity profile the occurrence of species like Sundari (Heritiera fomes) has<br />

become less since it is sensitive to change in salinity level.<br />

With the progress of reclamation in the Sundarbans <strong>and</strong> increase in human population, the wild life is<br />

faced with gradual extinction. The most noted species are Royal Tiger, Cheetal (Spooted dear) <strong>and</strong><br />

the Crocodiles. In Sundarbans tigers very often carry away wood-cutters, honey collectors <strong>and</strong> others<br />

from the forest area. They are great swimmers <strong>and</strong> there are instances that they carry away men<br />

from boats anchored in mid stream. The crocodiles in Sundarbans known as Estuarine Crocodiles<br />

(Crocodilus Porosus) are also man eater.


2.24<br />

2.4.11. Forest composition<br />

The vegetation is peculiar to tidal swamps influenced primarily by salinity of water <strong>and</strong> secondarily by<br />

the nature of soil, tides & activities of the human agency.<br />

All the rivers in this forest tract are saline through out the year. The regions which are less saline may<br />

be included in the Salt Water Heritiera Forest type. Not only is Sundari found in these regions but<br />

also is the growth of vegetation much better than that in the region which is more saline. The latter<br />

may be included in the "Low Mangrove Forest" type, here Sundari is practically absent <strong>and</strong> the<br />

growth of the crop is extremely poor. The entire crop available in this Division (24-Parganas South<br />

Division) is very much poorer in comparison to that of Bangladesh.<br />

Salt water Heritiera Forest type<br />

The upper story is composed mainly of Genwa with sattered Passur, Dhudal & Sundri. Genwa is<br />

finally associated with a dense growth in the understroyed. Sundari is found in the northern part of<br />

the forests, but its number decreases towards the west & south. Keora & baen are often found<br />

occupying the mud blanks of rivers & canals. Garan, kankra & Ora are not uncommon on the river<br />

blanks. Baen sometimes occurs almost pure. Khalasi grows as bushes only on the edges of river &<br />

khals. The blank areas occupying the interior of the isl<strong>and</strong>s are either bare or occupied by very<br />

scattered dwarf jhamti Goran, Baen <strong>and</strong> H<strong>org</strong>oza. Pure patches of Hental are common on the dry<br />

elevated blanks of river <strong>and</strong> creeks. Golpata prefers the ever most mud blanks <strong>and</strong> is confined to a<br />

few blocks only, the new chars are covered mainly with Baen. The general height is 20-35 feet. The<br />

tallest tree in the type is keora which attains a maximum height of about feet.<br />

Low Mangrove Forest type<br />

The composition of this type is identical with that of the preceding except Sundari <strong>and</strong> Golpata that<br />

are almost absent <strong>and</strong> the height, growht <strong>and</strong> density are much lower.<br />

The formation of new chars <strong>and</strong> isl<strong>and</strong>s is common in this region. Dhani grass appears first upon the<br />

newly formed chars <strong>and</strong> nurses Baen, which is second in succession. When Baen is established<br />

Genwa comes in gradually <strong>and</strong> it is only when Genwa attains a sufficient height, Goran comes as an<br />

understorey. Ora & other species come in the intermediate period. The extreme salinity of water in<br />

the region does not permit Sundari <strong>and</strong> Golpata to grow.<br />

Thatch grass (ulu) is found growing in the Haliday Isl<strong>and</strong> <strong>and</strong> some similar isl<strong>and</strong>s only.


2.25<br />

2.4.12. Colonization of the Sunderbans<br />

Previously the entire area of Sundarbans was under forest. During the middle of Eighteenth century<br />

when the 24-Parganas District was given to lease to the East India Company, almost the entire area<br />

south of Calcutta was in a wild <strong>and</strong> uncultivated State with exception of small pockets of high l<strong>and</strong><br />

bordering the Hooghly <strong>and</strong> Jamuna, once branches of the Ganga. Those areas were either swampy<br />

or under the coverage of Forest <strong>and</strong> Jungle. The ground level was lower than the high tide level.<br />

Being attracted by the fertility of the soil <strong>and</strong> close proximity of Calcutta some adventurous people<br />

under the patronage of the then Collector General of East India Company, C. Rusell, started<br />

cultivation in 1770 in Matla <strong>and</strong> Bidyadhari basin east of Calcutta. The cultivation was done by<br />

constructing circuit embankments above tide level all along the deltaic channel to prevent saline<br />

inundation <strong>and</strong> clearing forests <strong>and</strong> jungles within the protected zone. The drainage was done either<br />

by Payna Cut of the embankment during low tides or by improvised type of wooden box sluices. In<br />

1831 after the completion of survey of the Sundarbans area by Messres William Dampier<br />

Commissioner <strong>and</strong> Lient Alex<strong>and</strong>er Hodges, Surveyor of the Surevey of India the forest l<strong>and</strong>s in<br />

Sundarbans were given to settlers systematically on lease under Grant Rules 1830. This has<br />

hastened the colonisation of Sundarbans by premature reclamation in wide areas spreading from<br />

North Eastern boundary in Haroa, Minakhan-Srindeskhali area to Kakdwip, Sagar Patharpratima<br />

area in South Western boundary. This method of l<strong>and</strong> reclamation prematurely had not been without<br />

its evils. On account of the embankments silt laden water at flow tide has been prevent from spilling<br />

of over the l<strong>and</strong> on either wide. The level of the l<strong>and</strong> has remained low while the bed level of the river<br />

has been raised due to deposition of silt. Rivers are choked <strong>and</strong> cease to function efficiently as<br />

drainage <strong>and</strong> navigation channels.<br />

The silt carried by the flow tide unable to spread over the l<strong>and</strong> is being deposited in the channel bed<br />

<strong>and</strong> is gradually aggrading it. A tidal channel when obstructed gets chocked in its own bed without<br />

any chance of diversion by avulsion, as the energy required for the purpose is lacking, it not being<br />

possible for a tidal channel to rise above the tide level. Thus the beneficiary activity of raising this<br />

portion of the delta has been lost to the country <strong>and</strong> the l<strong>and</strong> remains low with aggradation of<br />

channel. The deterioration of the tidal channels has aggravated due to the absence of perennial<br />

upl<strong>and</strong> supply which could have clushed back aggravated the silt load deposited on the channel bed<br />

during the semi-diurnal tide cycles back into the sea. No material contribution can be expected from<br />

local drainage only during three monsoon months. The first interference was the premature<br />

reclamation of the l<strong>and</strong> on either bank of the Matla <strong>and</strong> the Bidyadhari. Boundary channels began to<br />

deteriorate with the progressive rise in tide level of what may be called the "Heaping up tides". At port


2.26<br />

Canning (Bidyadhari Outfall into the Matla) the highest water level has risen by 2.0 Meter (6.55 ft.) in<br />

65 years from 1865 to 1930. Thus all the tidal channels <strong>and</strong> creeks within the prematurely reclaimed<br />

zones of Sundarbans were, <strong>and</strong> still are, in the process of such deterioration that the problem of<br />

drainage of the area is becoming more <strong>and</strong> more acute with the passage of time.<br />

With the rise in river beds, there is a corresponding rise in the level of flood at flow tide require<br />

constant raising of embankments. These evils attracted the attention of the then Government in 1909<br />

particularly after the observance of death of Bidyadhari causing ab<strong>and</strong>onment of Calcutta<br />

Corporation drainage outfall. Two following remedies were considered:<br />

1. Certain areas already reclaimed should be restored to tidal spill.<br />

2. Tidal spill should not be excluded by embankments on any l<strong>and</strong> in future until it has been<br />

raised to spill level.<br />

The first proposal was ab<strong>and</strong>oned for obvious reasons of rehabilitation of displaced people <strong>and</strong> loss<br />

of crop.<br />

An order was issued that the tidal spill should not excluded by embankments from any l<strong>and</strong> in future<br />

until it been raised to the level of the mean of high water spring <strong>and</strong> neap tides. Since that time the<br />

reclamation of further area has been practically stopped.<br />

As per terms of leases of those reclaimed l<strong>and</strong>s 1879 the maintenance of embankments which is the<br />

most vital element in cultivation was the responsibility of Zamindar or Lotdars. After the Estate<br />

acquisition in 1955-56 maintenance of these embankments in Sundarbans was vested on the<br />

Government in the L<strong>and</strong> <strong>and</strong> L<strong>and</strong> Utilisation Department. Till 1960 the Collector, 24-Parganas<br />

arranged to maintain these embankments, For want of technical <strong>org</strong>anisation under the Collector, the<br />

maintenance of these embankments with sluice Bridges was taken up by the Irrigation <strong>and</strong><br />

Waterways Development of Govt. of West Bengal.<br />

As per Estates acquisition Act of 1955 now all the cultivating tenants have become the actual owners<br />

of soil directly under the State up to ceiling fixed by Act.<br />

2.4.13. Agriculture<br />

The soils of the area are now alluvium made up mainly from washings of the Himalays by the Ganga<br />

<strong>and</strong> its tributaries. The soil is mainly clayey (Matial) <strong>and</strong> is of great natural fertility on which winter<br />

Aman rice of "Patiang" variety is grown. Sir William Willcocks, the internationally reputed river<br />

Engineer who visited the area in 1928 at the request of the Government of India remarked that the


2.27<br />

soil in Gangetic Delta is larger than that of Nile Delta in Egypt. The yield of paddy in the Sundarbans<br />

is higher then the average yield elsewhere in the state. It has been reported on the Census Report of<br />

West Bengal of 1951 that the crop cutting experiments, in that area at that time, indicate 16.6 quintals<br />

per Hectare (18 meter per Acre) by traditional methods. Ninety six percent of cropped area of<br />

Sundarbans is under Aman Paddy (winter paddy) which is practicably the only crop. The small area<br />

on which other crops are grown consists of patches of comparatively high l<strong>and</strong>. The more important<br />

of these other crops are pulses, mainly Khesarit Jute, tobacco <strong>and</strong> vegetables. A small area is also<br />

under orchards. The problem of Agriculture in this area is intimately connected with the problem of<br />

drainage. The Aman Paddy is transplanted in July <strong>and</strong> harvested in December, <strong>and</strong> if the fields are<br />

not fully drained before the harvesting time, there is huge loss of paddy due to the accumulated<br />

water. Due to deterioration of tidal rivers <strong>and</strong> creeks for cutting spill areas the drainage has become<br />

acute with passing of time, hence in most of the years the production falls below on account of<br />

inadequate drainage facilities. In years of heavy rainfall the damages are more.<br />

There is no scope of surface irrigation as the winter in the adjoining rivers <strong>and</strong> creeks are saline. A<br />

sweet water stratum is not generally available in underground within a distance of 300m from the<br />

surface. Hence lift Irrigation from underground at reasonable cost is not possible. Thus the area is<br />

single cropped. Unless the area is protected by marginal embankments from saline inundation <strong>and</strong><br />

sufficient drainage sluices are constructed there can not be any agriculture.<br />

The people of this region are intelligent <strong>and</strong> hardworking. They will adopt modern methods of<br />

agriculture <strong>and</strong> increase their inputs i.e., fertiliser good seeds, pesticides etc. if they are assured of<br />

protection from saline inundation <strong>and</strong> proper drainage.<br />

2.4.14. Statistics of the Sunderbans (the portion that is in West Bengal)<br />

The following data has been obtained from Jana (2005) which is of importance to this project.<br />

Total area<br />

Location<br />

9630 sq. km.<br />

On the east – River Ichhamati<br />

On the west – River Hooghly<br />

On the north – Dampier-Hodges line<br />

On the south – Bay of Bengal


2.28<br />

Administrative information<br />

Population<br />

Covers part of two districts – North 24 parganas (6 Developm<br />

Blocks) <strong>and</strong> South 24 parganas (13 Development Blocks). Cont<br />

5 Sub-divisions, 19 Police Stations, 190 Gram Panchayats<br />

1064 villages<br />

37,55,924 (according to 2001 census)<br />

Isl<strong>and</strong>s Total - 102<br />

Habitated - 54<br />

Roads<br />

6695 kms. – unmetalled<br />

1884 kms. – metalled<br />

Wildlife sanctuary<br />

Sajnekhali sanctuary – 362 sq. km.<br />

Lothian Isl<strong>and</strong>s sanctuary – 38 sq. km.<br />

Halliday Isl<strong>and</strong>s sanctuary – 6 sq. km.<br />

Sundarban Tiger Project<br />

Sundarban National Park<br />

Important rivers<br />

Mangrove<br />

Predominant occupations<br />

2600 sq. km.<br />

1300 sq. km.<br />

Hooghly, Bidyadhari, Ichhamati, Jamuna, Saraswati, Kod<br />

Raimangal, Bidya, Thakuran, Herodanga, Hogol, Gos<br />

Muriganga<br />

Mangrove species <strong>and</strong> similar vegetation – 64 types<br />

Owners of agricultural l<strong>and</strong>s, agricultural labourers, Collectio<br />

prawn seeds, Fishing in the estuaries<br />

2.4.15. Sunderban enviro-scapes<br />

As such, Sundarbans has a long history geologically <strong>and</strong> ecologically. However, the relatively recent<br />

incursion of human intervention over the past 200 years or so has made this place environmentally<br />

fragile. This becomes especially important with the issue of survival of the people who dwell here in<br />

spite of all odds against natural events. The rising water levels in the tidal channels has to be fended


2.29<br />

off by raising embankments, agriculture has to be done by keeping off brackish water from entering<br />

the fields, communication between different disjointed l<strong>and</strong>masses has to be done mostly by ferries<br />

<strong>and</strong> boats as bridges crossing over the tidal creeks are only on important routes. Nevertheless,<br />

certain areas have been developed to a good extent, which has given alternate means of livelihood<br />

to the people of the area. For example fisheries as an occupation have been taken up by many <strong>and</strong><br />

is next to agriculture. Tourism at some places is being promoted. Nevertheless, for most of the areas<br />

here, the question of survival at the time of disasters like cyclones still looms large. Since the rise of<br />

the water levels in the rivers would expectedly be more, the embankments need to be raised <strong>and</strong><br />

strengthened. They need to be protected, wherever possible, by mangrove plantations. Connectivity<br />

of communication routes need to be ascertained. Refuges need to be constructed at critical places<br />

for the people to take shelter at the time of a disaster. In order to find a solution to these aspects, a<br />

first h<strong>and</strong> underst<strong>and</strong>ing is necessary for the existing conditions. The images provided in the<br />

following pages provide a glimpse of the some of the regions <strong>and</strong> their conditions.<br />

Crossing over to Sagar isl<strong>and</strong>s at Hardwood Point<br />

Dwellings close to embankments<br />

Pitched embankments at Hardwood Point<br />

Embankment damaged due to wave action


2.30<br />

Mangrove plantation beyond the embankment<br />

A retired embankment at Kakdwip<br />

Mangrove plantation beyond the embankment<br />

Crossing over to Namkhana<br />

Ferry for crossing vehicles<br />

An arduous wait for ambulance with patient at jetty<br />

Vehicles to cross only when craft is full<br />

Bridge across a small tidal creek (Namkhana)<br />

Greenery protected by embankments (in the background)


2.31<br />

Tidal creek used as berthing place by fishing boats<br />

Fishing farms (near Bak-khali)<br />

Mangrove plantation at Bak-khali back-swamp<br />

Casurina plantation at Bak-khali beach<br />

Common peoples’ ferry for crossing over to Pathar Pratima<br />

Government Launches<br />

Fisheries at Minakhan<br />

Embankments across Kultigong (river at low tide)


2.32<br />

A retired embankment of river Matla (opposite to Canning)<br />

Mangrove plantation between embankment <strong>and</strong> the river<br />

From over the bridge connecting Basanti<br />

Ferries still being used for crossing people<br />

Embankment serving as road (tide water to right)<br />

Tidal creek used as shelter for fishing boats (Jhar-khali)<br />

Brick paved road over embankment at Jhar-khali<br />

Sundarban forest buffer area across the creek (view from Jhar-khali)


2.33<br />

A couple of mangrove species at Jhar-khali eco-park<br />

A couple of mangrove species at Jhar-khali eco-park<br />

2.5. The western coastal zone<br />

According to Paul (2002), the inner boundaries of the coastal plains of Midnapore littoral tract (Kanthi<br />

coastal plains) represents this region. Along the dune <strong>and</strong> beach plain coast (Rasulpur-Subarnarekha<br />

complex), the last line of inl<strong>and</strong> dune ridge some 10 km to the north of the north of the present day<br />

shoreline is fronted by a depositional plain covered with parallel trending s<strong>and</strong>y ridges interspersed<br />

with narrow tidal basins of muddy deposits.<br />

Figure 2-7. The western coastal region of West Bengal showing the different embankments<br />

(along the rivers <strong>and</strong> the sea dyke along the sea-face (from Paul, 2002)


2.34<br />

The beaches are flattened by storm attacks <strong>and</strong> associated wave related phenomenon. The s<strong>and</strong>y<br />

coast of Midnapore littoral tract possesses a complicated sediment regime because of the southwest<br />

to northeast longshore drift which transports a big quantity of s<strong>and</strong> every year. This is proved by the<br />

recorded data of Bh<strong>and</strong>ari <strong>and</strong> Das (1993), which estimates an average of 100000 – 128000 m 3 per<br />

year across different sections at old Digha beach. This sediment interacts with the downstream<br />

discharge of the Hooghly estuarine sediments which in turn produce a circulation path of sediment<br />

transport <strong>and</strong> modify the coastal topography along this region.<br />

In this region, the s<strong>and</strong>y beaches are predominant, <strong>and</strong> according to Chakrabarti (2004) here the<br />

erosion is present in the beach face of Digha-Shankarpur (Ch<strong>and</strong>pur) sectors whereas accretional<br />

phenomenon is observed in the same beach face of Dadanpatrabar-Junput area. This has been<br />

shown in Figure 2-8. The sea face here is constantly under the threat of erosion by the impact of<br />

ocean waves, <strong>and</strong> the higher waves lashing the shore during storm surges generated by cyclones<br />

are of serious concern to the stability of the beaches <strong>and</strong> shoreline. There has been indiscriminate<br />

human action leading to destabilization of the coastal zones over the past couple of decades.<br />

Figure 2-8. The geological <strong>and</strong> morphological features of the western coastline of West Bengal<br />

(from Chakrabarti, 2005)


2.35<br />

This has led to the Government to the promulgation of the Coastal Regulatory Zones (CRZs). For the<br />

Digha Development Area, falling under the western coastal plains of West Bengal, the sectors A-1,<br />

B-5, F-1, F-2, H-1 & N are categorised as CRZ-III. The sectors B-1, B-2, B-3, B-4, B-7, C-5, E & E-3<br />

are categorised as CRZ-II. In case of Haldia Development Area, also located in the western coastal<br />

plains, the Haldia Port Complex Area only is categorised as CRZ-II. The CRZ for Haldia shall be<br />

100m from the High Tide Line. For the Digha/Shankarpur area, the portion up to s<strong>and</strong> dunes has<br />

been classified as CRZ-I <strong>and</strong> area beyond dunes.<br />

There is a small stretch of sea beach to the west of Digha extending up to the West Bengal-Orissa<br />

border, which is a part of the Subarnarekha estuary. The character of this part of the coast is similar<br />

to that from Digha to Junput.<br />

2.5.1. Physical features<br />

Paul (2002) mentions that there are seven sets of beach ridges in the Subarnarekha estuary, which<br />

is in the Balasore district of Orissa, but just a few tens of kilometers along the coast from the Bengal<br />

border. Each set of beach ridge is followed by a number of bars. These are linear to slightly curved<br />

beach ridge features which are also extended towards the Kanthi coastal plains of the east<br />

Midnapore district, but the number of beach ridges followed by bars is reduced in the coastal<br />

tract.marine terraces are present all along the Digha shoreline of the east Midnapore district. The<br />

ancient dune ridge complex of Kanthi-Paniparul region is thought to be formed by the marine<br />

regression. The dune s<strong>and</strong>s are oxidised <strong>and</strong> the dune ridge indicates the position of the ancient<br />

shoreline of kanthi coastal plain.<br />

2.5.2. Topography<br />

The western coastal plain of West Bengal is represented by the str<strong>and</strong>plain surfaces of Kanthi <strong>and</strong><br />

Digha. Slow upheaval of the region <strong>and</strong> successive shoreline regression during the Holocene<br />

(geologic) period has left a significant topographic impression of ancient marine features. Series of<br />

beach ridges, bars <strong>and</strong> older dune ridges or younger dunes, tidal basins of the past <strong>and</strong> marine<br />

terraces reveal the typical raised features of this coast. All the linear features are parallel to the<br />

present day shoreline. Older s<strong>and</strong> dune sediments of Kanthi, Darua-Paniparul-dariapur-Khajuri<br />

regions are oxidised <strong>and</strong> rain washed over a prolonged period. By height <strong>and</strong> the largest area of<br />

occupation, the dune row represents first shoreline of str<strong>and</strong>plain surface <strong>and</strong> longer phase of the<br />

regressive sea. The eastward extension of the Ramnagar beach ridges is restricted by the presence


2.36<br />

of a doiminant tidalbasin of the Holocene period around the region (Paul 2002). Surface height of the<br />

beach ridges range from 3.5m to 4.6m above the sea level. Two or three rows of closed spacing<br />

dunes separated by linear tidal valleys, represent the Digha surface of the the present day<br />

shoreline.The two successive s<strong>and</strong> dunes are lying over the two significant terraces from the<br />

shoreline to the inl<strong>and</strong> location around Digha. The beach fringed dune row is continuous laong the<br />

present shoreline of Digha, Shankarpur, Dadanpatrabar, Junput, Dariapur <strong>and</strong> Khajurri sectors.<br />

Younger dunes, because of their active depositional process along the beach fringed shores, are<br />

higher in altitude than the older ones. This dune row, though, is affected by toe erosion <strong>and</strong> wave cut<br />

cliffs all along the shoreline from Digha to Dadanpatrabar areas. In between Ramnagar beach ridges<br />

<strong>and</strong> Digha dune row, shore parallel salt marshes are extensive around the mouths of the Digha<br />

estuary, Jaldah estuary <strong>and</strong> Pichhabani channel. They are also the tidal spill basins of monsoonal<br />

high seas (Usually flooded from June to November) around the region.<br />

Specific regions may be identified for dune ridge colonies along the western coastal plains of West<br />

Bengal. The longest beach-fringed dune ridge sector of the Kanthi coastal palins runs along a stretch<br />

of 19.5km shoreline from Pichhabani tidal pass to Rasulpur river. This low-height (3.3m to 6.0m) <strong>and</strong><br />

widespread dune sector (180m to 300m) of Junput region is covered partially by planted casurina<br />

forest. Over a kilometer wide beach plain dominated by fine s<strong>and</strong> <strong>and</strong> silts, <strong>and</strong> associated seafront<br />

tidal flat surface provide a mixed <strong>and</strong> complex sub-environments of idff energy levels for the growth<br />

of Aeolian s<strong>and</strong> dunes <strong>and</strong> widespread estuarine or tidal flat deposits around the shoreline of Junput.<br />

The northeastern part of the Kanthi coastal plain comprises of extensive low-lying tract of fluviomarine<br />

deposits. The entire alluvial tract has evolved through the seaward advancement of delta fan<br />

deposits of Rupnarayan <strong>and</strong> Kasai rivers at Holocene regressive phases of the sea (6000 YBP).<br />

Estuarine tidal flat deposits are sre still active around the channel margins, channel beds <strong>and</strong><br />

unprotected tidal spill basins. The regions of Khajuri, Hijli, N<strong>and</strong>igram, haldia, Sutahata, mahisadal,<br />

<strong>and</strong> Tamluk have elevation ranging from about 2m to 2.4m above mean sea level. The lowl<strong>and</strong><br />

surface is dissected by several tidal channels, Hijli tidal canal, Rasulpur, Haldi <strong>and</strong> Rupnarayan<br />

estuaries. The l<strong>and</strong> elevation of the floodplains <strong>and</strong> tidal flats of these rivers are expected to increase<br />

concurrently with the sea levels as fresh alluvium continues to be deposited, except where this is<br />

prevented by coastal embankments. At the same time, the raising if the embankments have further<br />

impeded drainage from interior floodplain areas of Kasai <strong>and</strong> Rupnarayan.<br />

Compared to an open shoreline of Digha, the barred coasts of Talsari <strong>and</strong> Junput, where an<br />

emergent offshore s<strong>and</strong> bar or s<strong>and</strong> spit creates a more or less enclosed lagoon, have a more


2.37<br />

comlex geometry, <strong>and</strong> a range of energy levels in depositional processes. The enclosed lagoons of<br />

Talsari <strong>and</strong> Junput accumulate sediments that are identical to either estuarie or tidal flat deposits.<br />

2.5.3. Rainfall, Temperature <strong>and</strong> Humidity<br />

As such, the rainfall, temperature, wind <strong>and</strong> cyclone characteristics are somewhat similar to that<br />

described for the eastern coastal zone. However, the long dry spell of hot humid summer brings a<br />

drastic change in the dune formations <strong>and</strong> s<strong>and</strong> hazards. At this time the summer temperature<br />

ranges from 29 0 C to 38 0 C. S<strong>and</strong> surface temperature of the bare s<strong>and</strong> dunes rises up to 48 0 C around<br />

the month of May. Rainfall is comparatively lower in the western coastal tracts (of east Miidnapore<br />

district) than the eastern part (south 24 Parganas district). September is the rainiest month. Number<br />

of rainy days ranges from 100 to 150 though it varies from year to year in the littoral tracts. The<br />

amount of rainfall also fluctuates from year to year duw to the dominance of l<strong>and</strong>winds over maritime<br />

influences. In the year 1986, the rainfall recorded at Digha was 2066.5mm compared to 258.3mm in<br />

1985. The average humidity is just over 80 percent <strong>and</strong> is more or less uniform throughout the year.<br />

2.5.4. Winds<br />

The normal wind record of Sagar, S<strong>and</strong>heads, Digha <strong>and</strong> Kanthi stations reveal that the prevailing<br />

wind blows from north <strong>and</strong> northeast from the beginning of October to the middle of march. The<br />

months of January <strong>and</strong> February are relatively calm.Violemnt winds start blowing again from about<br />

the middle of March till about the end of September. The average wind speed during the southwest<br />

monsoon varies from 30 to 50 km per hour. <strong>Storm</strong>s are common during spring <strong>and</strong> autumn when the<br />

wind velocity generally exceeds 100 km per hour. In the winter months, the wind speeds generally fall<br />

below 10 km per hour all along the coastline.<br />

2.5.6. Sediment/Soil characteristics<br />

Both cohesive as well as cohesionless soils are found along the coasts of the western littoral plains.<br />

Cohesionless soils (for example, s<strong>and</strong>) are made up of solid grains usually bigger than 0.06mm in<br />

diameter. According to Paul (2002) over 90 percent of the coastal sediments of West Bengal are the<br />

products of rivers. Graphical presentation of sediments of the western coastal plains, especially near<br />

Digha beach fce shows weak bimodal size. In the dunes, estuarine banks <strong>and</strong> beach samples, the


2.38<br />

primary mode is centered on the fine grained s<strong>and</strong>. The same reference cites the following mean<br />

sediment sizes for the coasts:<br />

Region<br />

Mean diameter (mm)<br />

Coastal foredunes<br />

Coastal inl<strong>and</strong> dunes<br />

Sea beaches<br />

Digha dune s<strong>and</strong> 1.44 to 2.80<br />

Dariapur dune s<strong>and</strong> 2.15 to 2.95<br />

Kanthi dune s<strong>and</strong> 1.58 to 2.25<br />

Paniparul dune s<strong>and</strong> 1.98 to 2.00<br />

Junput beach s<strong>and</strong> 2.57 to 2.70<br />

Digha beach s<strong>and</strong> 1.83 to 2.80<br />

2.5.7. River system<br />

The rivers Hooghly, Damodar, Rupnarayan, <strong>and</strong> Haldi rivers with their freshwater discharge <strong>and</strong><br />

sediments have led to the deposition of terrigenous s<strong>and</strong>s, silts <strong>and</strong> clays to form deltas. Damodar,<br />

Rupnarayan, <strong>and</strong> Haldi rivers have built their deltas over the shallow offshore flat of the geological<br />

past in east <strong>and</strong> southeastward direction. Further eastward advancement of the deltas was cheked<br />

by the southward trend of delta building activities of Bhagirathi-Hooghly river in the Bengal Basin.<br />

The Kanthi str<strong>and</strong>plain surface is produced by composite river <strong>and</strong> wave dominated forces.<br />

2.5.8. Tides<br />

The Digha coast experiences semi-diurnal tidal fluctuations. During autumnal equinox the tidal<br />

amplitude ranges from 5m to 5.8m from the mean sea level. The general tide level of this area,<br />

however, is 4.5m above the mean sea level. Tidal ranges in excess of 4m produce strong tidal <strong>and</strong><br />

residual currents which may extend for hundreds of kilometers inl<strong>and</strong>. The river Hooghly is affected<br />

by the tidal fluctuation upto about 300km inl<strong>and</strong> (up to Nabadwip). Changes in winds <strong>and</strong><br />

atmospheric pressure can thus cause the actual tidal level to be very different from the expected<br />

value, especially during storms. The heay rainfall associated with cyclonic storm in the gangetic West<br />

Bengal produces enormous discharge of freshwater in the river Hooghly when met with a rising storm<br />

surge may cause huge inundation as happened in the last week of August <strong>and</strong> first week of<br />

September 1978.


2.39<br />

2.5.9 Western coast visuals<br />

Boulder pitched anti-erosion bank revetment at New Digha (looking<br />

east)<br />

Boulder pitched anti-erosion bank revetment at New Digha (looking<br />

west) – Casurina shelter belt plantations in the background is in<br />

Orissa<br />

Young Casurina shelter belt plantations at New Digha<br />

Concrete block pitched revetment (for about 1 km) at Old Digha<br />

Beach erosion with affected Casurina plantation east of Old Digha.<br />

Temporary protection erected to prevent further erosion<br />

Beach erosion <strong>and</strong> affected Casurina plantation at Shankarpur.<br />

Damaged approach to sea being temporarily protected.


2.40<br />

Aquaculture ponds located between sea dikes near Digha<br />

Earthen Sea dike along the approach road from Contai to Digha<br />

Sea bank erosion along Ch<strong>and</strong>pur beach<br />

Temporary protection of sea bank from wave dash along Ch<strong>and</strong>pur<br />

coastline<br />

Depletion of shelterbelt plantation along Ch<strong>and</strong>pur coastline<br />

Flooding near Belda (East Midnapore) as a result of excessive<br />

precipitation due to cyclonic depression<br />

Shelter less people taking refuge along elevated Highways (near<br />

Belda)<br />

Inundation of agricultural l<strong>and</strong> near Egra (East Midnapore)


2.41<br />

2.6. The Hooghly estuarine isl<strong>and</strong>s<br />

As may be seen from figure 2-9, the river Hooghly estuary is situated in between the western littoral<br />

tracts <strong>and</strong> the eastern Sundarban region of the West Bengal delta. River Hooghly is the largest fresh<br />

water discharge carrier as it gets water from many rivers that contribute their flows to it. There are a<br />

few isl<strong>and</strong>s within the estuary of Hooghly which are inhabited, the largest <strong>and</strong> most famous of these<br />

being the Sagar Isl<strong>and</strong>. It is also the largest of all the isl<strong>and</strong>s – around 209 sq. kms.<br />

Figure 2-9. Important isl<strong>and</strong>s at river Hooghly estuary<br />

Many linear s<strong>and</strong> banks parallel to the tidal flow s have elevated the flood of the Hooghly estuary,<br />

which have some places developed into isl<strong>and</strong>s. Accumulation of finer sediments is enhanced with<br />

the colonization of salt marsh plants <strong>and</strong> mangroves on the isl<strong>and</strong> surface. However, these isl<strong>and</strong>s<br />

are intersected by many tidal creeks which convey the tide waters into the middle part of the isl<strong>and</strong><br />

during tidal flooding. Catastrophes like cyclones <strong>and</strong> associated storm surges, tidal waves, disastrous<br />

floods destabilize the growth of isl<strong>and</strong>s in the estuary.


2.42<br />

All the isl<strong>and</strong>s are situated within the middle reaches of the Hooghly estuary. Some of these are:<br />

nayachara, Ghoramara, Lohachara, Bedford, Sagar, Sikarpur, Kankramari, Mahisani, Jambu, <strong>and</strong><br />

Chuksar. Lohachara <strong>and</strong> Khasimara isl<strong>and</strong>s are already eroded in the estuarine environment.<br />

Ghoramara <strong>and</strong> Bedford isl<strong>and</strong>s are gradually being reduced in their size. Parts of Sagar Isl<strong>and</strong><br />

(Bisalakshipur, Beguakhali, <strong>and</strong> Sikarpur) are also eroded by faster tidal currents (Paul 2002).<br />

The 11.5km long stretches of the sea front of the Sagar Isl<strong>and</strong> on its southwestern side, parts of the<br />

Jambu Isl<strong>and</strong>, <strong>and</strong> the seaward side of the Chuksar Isl<strong>and</strong> are dominated by shoreline features <strong>and</strong><br />

backshore dune fields. Waves <strong>and</strong> currents deposit s<strong>and</strong> in the shore zone of open sea-facing<br />

isl<strong>and</strong>s of the Hooghly estuary. Strong onshore winds, particularly in the pre-monsoon season,<br />

transport s<strong>and</strong> from the sea beach to the back-shore areas where dense vegetation cover attracts<br />

s<strong>and</strong> particles to accumulate into s<strong>and</strong> dunes. Dunes are less frequent weher abundant s<strong>and</strong> supply<br />

is absent (Paul 1994).<br />

The most extensive l<strong>and</strong>forms found in the Hooghly estuary channels are the tidal flats, which are<br />

mostly restricted to intertidal zone. Tidal flats occur in the sloping sides of estuary channel <strong>and</strong> minor<br />

tidal channel, <strong>and</strong> also on the isl<strong>and</strong> <strong>and</strong> bar surface. According to Paul (2002), there are two types<br />

of tidal flats in the Hooghly estuary – the sheltered flat <strong>and</strong> the open-sea tidal flat. Variation of wave<br />

heights <strong>and</strong> tidal ranges controls the geomorphic positions <strong>and</strong> morphologies of the tidal flats.<br />

Isl<strong>and</strong>s, bars, <strong>and</strong> deltaic flats of the inl<strong>and</strong> estuarine section are usually sheltered from the effects of<br />

wind-driven waves. The sheltered section of the estuary with large tidal range enhances the<br />

deposition of fine-grained silts <strong>and</strong> clays to form mud flats <strong>and</strong> marshes in the isl<strong>and</strong>s <strong>and</strong> deltaic<br />

flats. Nayachara Isl<strong>and</strong>, Bedford Isl<strong>and</strong>, Sikarpur Isl<strong>and</strong> <strong>and</strong> Kankramari Char are good examples of<br />

such extensive growth of tidal flats.<br />

The shorelines of Sagar Isl<strong>and</strong>, Jambu Isl<strong>and</strong>, Chuksar Isl<strong>and</strong>, Frasergunj, <strong>and</strong> Bak-khali are<br />

exposed to wave attacks at the lower reaches of the Hooghly estuary. Here, the accumulation of<br />

sediment deposited by waves <strong>and</strong> currents has produced beaches in the shore zone.<br />

The human habitation within the isl<strong>and</strong>s is guarded by circuit embankments, which act more like<br />

polders. Some of the embankments (like those in Sagar Isl<strong>and</strong>) are looked after by the Kolkata Port<br />

Trust (KoPT), <strong>and</strong> the rest by the Irrigation <strong>and</strong> Waterways Department (I&WD) of the Government of<br />

West Bengal. However, the retired embankments (the embankment that is situated some distance<br />

away from the riverbank) are less prone to damages which can be severe due to the cyclinic strom<br />

surges. KoPT has prepared a scheme for river training works in the interior of the estuary on the<br />

basis of recommendations of various expert committees <strong>and</strong> on the basis of the results of Hydraulic


2.43<br />

model studies carried out Kolkata, Pune <strong>and</strong> Hamburg (Germany). This is, of course, has been done<br />

with the intention of maintaining the navigable channels at Kolkata <strong>and</strong> Haldia ports. The protection<br />

measures for the Nayachara Isl<strong>and</strong> have been completed by the KPT under this scheme.<br />

The rest of the embankments under the I&WD need extensive repair <strong>and</strong> protection, if the interests of<br />

the population residing within these circuit embankments need to be protected. This is all the more<br />

important as most of the isl<strong>and</strong>s face the wrath of not only the storm surge waves, but also the strong<br />

gales associated with the cyclones.<br />

2.7. Threat of damage from tropical cyclones<br />

The vulnerability of the eastern coastal region of the State of West Bengal due to cyclones is due to<br />

the two reasons: (a) Erosion of the river <strong>and</strong> creek banks of network of channels the due to strong<br />

river currents, <strong>and</strong> (b) The damage to the embankments by the impact of the wave dashes that<br />

generate due to cyclonic storms. These waves could be the direct waves from the oceans hitting the<br />

embankments facing the sea. Or, these could be the waves diffused in the tidal creeks that hit the<br />

embankments in the hinterl<strong>and</strong>.<br />

The other threat from cyclonic storms is due to the damage of infrastructure due to the excessively<br />

strong winds. In the coastal regions of the state, the general socio-economic condition of the local<br />

populace is rather low. Consequently, the housing types mostly belong to those made of mud,<br />

bamboo <strong>and</strong> other locally available raw materials. The roofs of most of these kutcha houses are<br />

made of thatch, though baked tiles are also common. However, all these are quite vulnerable to<br />

strong gusts of wind.<br />

The cyclonic depressions also generate a lot of precipitation. The inhabited areas of Sundarbans are<br />

mostly enclosed by circuit embankments <strong>and</strong> hence a lot of rain results in waterlogged conditions at<br />

the time of cyclones. According to Kanjilal (2006), proper field drainage is required to bring excess<br />

water from the farm plots <strong>and</strong> the village area to the main drainage canals <strong>and</strong> to keep the ground<br />

water level sufficiently low. The slope required for the transport of this excess water needs to be in<br />

line with the available head determined by the difference in level of the farm plots <strong>and</strong> the water<br />

surface in the main canal to which the excess water needs to be evacuated. The system of canals<br />

<strong>and</strong> ponds which is supposed to:<br />

• Collect <strong>and</strong> to store the water to be used later for agricultural or domestic purposes,


2.44<br />

• Transport the water to the sluice gates with an acceptable loss of head to allow for a<br />

maximal head at these gates,<br />

• To store the excess water that needs to be spilled through the sluice gates during the<br />

periods that this drainage is hampered by high water levels in the rivers.<br />

Well sized sluices are required to evacuate the excess water during ebb, with proper gates which,<br />

provided that they are adequately operated <strong>and</strong> maintained, can keep the water level in the system<br />

within acceptable limits <strong>and</strong> can prevent intrusion of saline water through the gates during high tides.<br />

If drainage in tidal regions is not performing satisfactorily often people are inclined to assume that the<br />

sluice gates are too small <strong>and</strong> are as often inclined to neglect the other components of the system.<br />

An enlarged storage in the main system does not reduce directly the total amount of water that needs<br />

to be spilled but it reduces the required capacity of the sluices be-cause the evacuation of water can<br />

be arranged over a longer series of tides. When however the enlarged storage should lead to an<br />

extended area to be cultivated in the dry season, the volume of water that needs to be spilled will<br />

reduce. Excess water is "promoted" to useful water.<br />

Without detailed information it is impossible to determine which package of measures should be<br />

taken to establish the best possible drainage infra-structure. This does not mean that no action can<br />

be taken to improve the present situation without a detailed investigation. An inventory mobilizing the<br />

experiences of the farmers might lead to indications about the "bottle-necks" in the drainage process.<br />

Nevertheless, the absence of representative climatological data <strong>and</strong> reliable topographical data about<br />

the levels of the different plots, levels <strong>and</strong> sizes of the canals <strong>and</strong> ponds, levels of the sluices <strong>and</strong><br />

data about the water levels in the rivers is a constraint for the implementation of the best possible<br />

drainage system.<br />

2.7.1. River / channel bank erosion<br />

As mentioned before, the banks fail due to either an undercutting by strong flows in the channels<br />

parallel to the bank or by slope failure, which may be termed as geotechnical failure. Figure 6 shows<br />

the mode of failure <strong>and</strong> bank retreat due to parallel river current <strong>and</strong> Figure 2-10 shows the modes of<br />

geotechnical failure.<br />

As may be observed from Figure 2-11, there could be one mode of failure of the river bank, in which<br />

strong river currents erode away the toe material from the bottom of the banks. In this way, the base<br />

becomes weaker, <strong>and</strong> gradually the entire bank line recedes.


2.45<br />

It has been mentioned earlier that most of the rivers <strong>and</strong> creeks in the Sundarban estuary do not<br />

have any head water discharge from the upstream, meaning thereby that there is no substantial<br />

catchment for these channels on the upstream. Thus there is no possibility of the river current<br />

becoming very high due to a high rainfall in the catchment. The only reason why the river currents<br />

may become high is due to a higher influx of tidal water due to a higher rise on the ocean level, which<br />

may be possible with a storm surge activated by a cyclone. The sudden gush of water in such a case<br />

may affect the concave banks of a river more, since the velocities would naturally be higher than the<br />

average river velocity. Further, in a strong bend, the presence of secondary currents (in a plane<br />

across the river flow) may also aid in undercutting the bank toe.<br />

Figure 2-10. Bank failure <strong>and</strong> retreat due to undercutting of riverbank base by strong river<br />

current<br />

Figure 2-11. Bank failure modes (From Hey et al. 1995)


2.46<br />

The other type of failure may occur due to reasons like the presence of excess pore pressure<br />

generated by a quick falling river water level. When a bank fails in this kind of geotechnical mode, the<br />

probable slip lines or slip circles may be predicted, which depends also upon the type of material<br />

forming the banks.<br />

2.7.2. Embankments/dykes <strong>and</strong> their failures<br />

Agriculture is carried behind the nearly 3500 Kilometer of protective earthen embankments. Those<br />

are constructed by local earth of surface layers which consist mostly of very fine coherent. It is<br />

generally of low liquid limit. This soil has got the property of low erosion resistance because this<br />

material becomes liquid in coming with contact with water. Previously a forest belt of minimum width<br />

of 100 meter was kept as Foreshore l<strong>and</strong> in aligning on the embankment for the purpose of damping<br />

the wave action. But by this time the increase of population <strong>and</strong> want of fuel has caused unregulated<br />

felling <strong>and</strong> now practically there is no protection to embankment from high waves <strong>and</strong> suiting<br />

currents.<br />

These dykes were originally constructed by the Latdars with the gradual rise of high water level over<br />

the years; the Latdars increased the height of the dykes correspondingly. The constant erosion of the<br />

soil due to wave wash was also attended by them. But since late forties of this century the Latdars<br />

started neglecting the maintenance due to rise in labour cost as well as the apprehension of<br />

imminent state purchase of the Latdar's interest. The dykes at the time of taking over by the Irrigation<br />

Department in 1960 were found to have inadequate section <strong>and</strong> strength. Breaches <strong>and</strong> overtopping<br />

was of quite common phenomenon.<br />

Due to paucity of funds, this enormous length of embankments could not furthermore be brought to<br />

adequate section <strong>and</strong> height to ensure safety. In many cases these dykes are aligned bordering the<br />

scouring bank of me<strong>and</strong>ering rivers. This necessitated another set of embankments, some dist<br />

inl<strong>and</strong>, called the retiring embankments.<br />

Generally during flow tide accompanied strong southerly wind from second fortnight, of March, to<br />

October, the river water splashes over the earthen embankment causing continuous erosion of soil.<br />

This phenomenon occurs twice a day <strong>and</strong> the poor soil give very little resistance to it. On an average<br />

two major tropical cyclonic storms occur in each year in Sundarbans. During such cyclone storms<br />

high waves are generated in sea face <strong>and</strong> which attack on the embankments at great storm velocities<br />

<strong>and</strong> thus overtop embankment without free board, erode river side slope <strong>and</strong> crest <strong>and</strong> cause breach.<br />

For want of cover protection works (Brick or Brick Block Revetment works) in strength of vulnerable<br />

zone, the breach cannot be prevented.


2.47<br />

As such, since most of the embankments have been constructed by many years before by not so<br />

scientific methods, the failures of these is no surprise, especially if these do not have adequate<br />

gradient on the river side or on the l<strong>and</strong> side. Further, even if these are well constructed, the gradual<br />

undercutting of the riverbank may lead to weakening of the foundation of these embankments leading<br />

to a sudden collapse. If the embankments do not have adequate face pitching, there is a high chance<br />

of these getting eroded away by the impact of lashing waves generated in the ocean or the rivers due<br />

to cyclonic storms (Figure 2-12).<br />

Figure 2-12. Embankment failure due to wave dash<br />

It may also be possible that the embankment protection in the form of brick pitching may not be<br />

strong enough at places to bear the wave dash, leading to exposure of the river side bank <strong>and</strong><br />

consequent erosion.<br />

A study by Hazra (2006) comparing the earlier maps of the Sundarbans <strong>and</strong> present day satellite<br />

imageries has inferred important statistics about the vulnerability of the isl<strong>and</strong>s in the region due to<br />

cyclonic effects. The researcher <strong>and</strong> his team had calculated the length of the embankments from<br />

Survey of India Topographic sheets (No.79B/4, 79B/8, 79B11, 79B/12,79B/ 16, 79C/1, 79C/2, 79C/5,<br />

79C/6, 79C/9, 79C/10, 79C/13, 79C/14, of 1969). The embankments were then digitized <strong>and</strong> length<br />

calculated, which was found to be around 3110.33 Km. Comparing this with the recent IRS 1D LISS<br />

III <strong>and</strong> PAN data of 2001, it was found out that some parts of the embankments have already been<br />

washed out by cyclones <strong>and</strong> erosion. It has also been inferred that due to high rate of siltation on the


2.48<br />

channel floor, some of the rivers like Muriganga, encircling the populated isl<strong>and</strong>s, are flowing above<br />

the level of the coasts. Detailed statistics has been provided in Table 2-6.<br />

Table 2-6. Change in area of the estuarine isl<strong>and</strong> system of Sundarbans<br />

(From Hazra, 2006)<br />

Isl<strong>and</strong>s<br />

Area in sq.<br />

Area in sq.<br />

Area loss<br />

Status of Embankment<br />

kms (1969)<br />

kms (2001)<br />

in %<br />

Dakshin<br />

52.722 44.520 15.55 125Km, 40 Km vulnerable<br />

Surendranagar<br />

Sagar 253.203 241.042 4.80 250Kmlong embankment, 15<br />

km washed off, 90 Km<br />

vulnerable<br />

Namkhana 156.908 149.222 4.88 150 Km. long embankment 50<br />

Km vulnerable<br />

Moushuni 35.244 30.067 14.60 30 Km long embankment 15<br />

Km vulnerable<br />

Lothian 36.041 34.986 2.92 Mangrove forest: No<br />

embankments<br />

Jharkhali 162.00 161.328 Stable 150km long embankment<br />

Ghoramara 9.083 5.349 41.11 5 Km Washed off<br />

Dulibhasani 190.515 185.338 2.72 Mangrove forest: No<br />

embankments<br />

Dhanchi 39.041 34.174 12.46 Mangrove forest: No<br />

embankments<br />

Dalhousie 78.233 66.713 14.73 Mangrove forest: No<br />

embankments<br />

Bulchery 32.700 26.227 19.80 Mangrove forest: No<br />

embankments<br />

Ajmalmari West 25.189 25.096 0.37 Mangrove forest: No<br />

embankments


2.49<br />

Ajmalmari East 75.664 70.923 6.27 Mangrove forest: No<br />

embankments<br />

Bhangaduni 45.112 30.855 31.6 Mangrove forest: No<br />

embankments<br />

Jambudwip 17.543 5.519 68.54 Mangrove forest: No<br />

embankments<br />

Further important observations regarding the erosion accretion pattern of the isl<strong>and</strong> system, as<br />

inferred by Hazra (2006) can be summarised as follows:<br />

• Erosional zones are most prominent among the 12 sea facing southern isl<strong>and</strong>s including<br />

Sagar at the west to Bhangaduni in the east.<br />

• Few isl<strong>and</strong>s, like Lohachara <strong>and</strong> Bedford (6.212 Km2), have already vanished from the map.<br />

• Within the inhabited isl<strong>and</strong>s, Ghoramara & Sagar <strong>and</strong> Mousuni Isl<strong>and</strong> together have suffered<br />

the bulk of erosion. Jambudwip, being the southernmost isl<strong>and</strong> at the confluence of Hoogly,<br />

has shown l<strong>and</strong>less by 68%<br />

• Total erosion over the 30 years time span is estimated to be 162.879Km2.<br />

• The western banks of the isl<strong>and</strong> are more vulnerable than the east <strong>and</strong> the rate is more<br />

severe indicating the role of tidal surges. Erosion is also seen along the sea facing<br />

shorelines where it is oblique.<br />

• Marginal accretion is localised in the inner estuary particularly along eastern <strong>and</strong> northern<br />

margin of isl<strong>and</strong>s <strong>and</strong> along the coast where it is mostly E-W <strong>and</strong> sea facing. Amount of l<strong>and</strong><br />

accretion over the past 30 years is estimated to be82.505Km2.<br />

• Emerging mud flats of 70's have suffered the maximum loss, due to not only erosion, but<br />

probably submergence as well.<br />

• The eastern matured isl<strong>and</strong>s are found to be comparatively more stable due to the presence<br />

of thick mangroves <strong>and</strong> lesser anthropogenic activities. Only marginal submergence is<br />

observed.<br />

Over the last 30 years, around 7000 people have been displaced <strong>and</strong> turned into environmental<br />

migrants due to sea level rise, coastal erosion, cyclone <strong>and</strong> coastal flooding breaching the


2.50<br />

embankments. Crops <strong>and</strong> properties over Rs.900 million have been destroyed <strong>and</strong> around 500<br />

people have lost their lives. These numbers are likely to increase manifold in future.<br />

The study also notes that the Sagar Isl<strong>and</strong>s is the most populated <strong>and</strong> vulnerable isl<strong>and</strong> of the<br />

Hoogly estuary. Over the last few decades the isl<strong>and</strong> has been seen to register a l<strong>and</strong> loss of 12 Km2<br />

with marginal accretion on the portion of the southern <strong>and</strong> eastern fringe. Within the last few<br />

decades, nearly 3800 persons have been rendered homeless from Sagar Isl<strong>and</strong> itself due to sea<br />

level rise, coastal erosion <strong>and</strong> flooding due to cyclones <strong>and</strong> consequent storm surges. In addition,<br />

four refugee colonies for the displaced persons from other isl<strong>and</strong>s (Lohachara, Ghoramara etc) have<br />

been set up at Sagar. A mathematical model coupled with GIS database developed by the School of<br />

School of Oceanographic Studies, Jadavpur University; demonstrate that with the current rate of sea<br />

level rise, the Sagar isl<strong>and</strong> will loose around 15% of its existing l<strong>and</strong> area by the 2020. An estimate<br />

considering the population growth rate <strong>and</strong> future population density of Sagar indicates that the<br />

number of displaced persons due to sea level rise <strong>and</strong> associated storm surges/coastal flooding will<br />

be around 30,000 by 2020.<br />

2.7.3. Inundation<br />

As mentioned before, the problem of inundation due to high rainfall within the circuit embankments of<br />

the inhabited isl<strong>and</strong>s is inevitable at the time of a high tide, coupled with a storm surge. As such,<br />

proper drainage is required along with right kind of sluices <strong>and</strong> vents. At the time of a high sea level,<br />

the isl<strong>and</strong> dwellers are also at a constant threat of further inundation likely to be caused by possible<br />

embankment failure. Since the dwellers here have settled before the full maturity of development of<br />

the isl<strong>and</strong>s, they continue to suffer from the gradual rise of the surrounding riverbeds compared to<br />

their l<strong>and</strong>s. Due to premature reclamation, the average ground level of some of the populated isl<strong>and</strong>s<br />

remains between 1.55 m to 0.75mts below the mean high water level of the tides <strong>and</strong> in the coastal<br />

area, the ground level remains about 2.60m below. This accentuates further the risk of embankment<br />

failure <strong>and</strong> washout. These embankments have now become the lifeline of the Sundarbans isl<strong>and</strong>s,<br />

as because, the safety of the lives <strong>and</strong> properties as well as agriculture <strong>and</strong> subsistence are<br />

dependant on the stability of the embankments.<br />

Excess rain water is drained from the fields into a system of canals <strong>and</strong> ponds. Some of the canals<br />

<strong>and</strong> ponds are excavated by the farmers for this purpose. Others are the result of the construction of<br />

embankments <strong>and</strong> roads. On many isl<strong>and</strong>s the canal system partly consists of small natural creeks in<br />

which dams has been constructed at their downstream end. The internal system of canals <strong>and</strong> ponds


2.51<br />

is used to store fresh water for domes-tic use <strong>and</strong> for drinking water of the animals. This fresh water<br />

is also used to water the garden crops which are grown in the dry season.<br />

Culvert type sluices, mostly provided with flap gates <strong>and</strong> with sliding gates enable spilling of excess<br />

water to the tidal rivers during periods when the water levels of these rivers are lower than the water<br />

levels in the internal drainage systems of the isl<strong>and</strong>s. When the water level of the rivers are higher<br />

than in the internal system, drainage is not possible. All water that flows into the system during these<br />

periods needs to be stored in the canals <strong>and</strong> ponds. Consequently there are two reasons water<br />

needs to be stored in the internal system a socio-economic one <strong>and</strong> one which is of a more technical<br />

nature.<br />

When the sliding gates of the sluices are open water will be drained to the river as soon as the water<br />

level in the river is lower than the water level in the internal system. The flap gates will open<br />

automatically; at first only slightly but when the difference in water level inside <strong>and</strong> outside increases<br />

the gates will open wider.<br />

When during outgoing tide the water level of the river becomes lower than the water level in the<br />

internal system <strong>and</strong> the sliding gates are open, the culvert might be in a submerged condition but<br />

soon the river level will be lower than the top of the culvert bringing the sluice in the intermediate<br />

condition. For other culverts in the Sundarban discharge starts under these intermediate conditions.<br />

Near the end of the outgoing tide the sluice might enter the free flow condition but as most of the<br />

sluices are not built close to the river often the water level in the level in the canal section connecting<br />

the sluice with the river will remain higher than the bottom of the culvert. Due to all this the<br />

discharges of the sluices cannot be computed but can only be determined by measurements.<br />

The presence of the flap reduces the discharge capacity of the sluices significantly. By its weight the<br />

flap is pushed downwards <strong>and</strong> this hampers the outflow of water. Some of the flaps in the Sundarban<br />

are constructed of wood, others are of cast iron. Although the latter are better from a maintenance<br />

point of view, they are heavier <strong>and</strong> reduce the outflow more than the wooden flaps.<br />

As the formula indicates, the discharge of a given sluice gate is determined by the water head. When<br />

the gate is spilling water the system of canals <strong>and</strong> ponds needs to convey water to this gate. For a<br />

proper drainage it is important that this transport of water is realized with a minimum loss of head.<br />

In theory there are two methods to reduce the loss of head in the canals:<br />

1. To reduce the slope in the canals required to transport the volume of water that needs to be<br />

spilled by the sluice. This can be realized by wide <strong>and</strong> smooth canals. This means that the<br />

canals to the sluices need to be cleaned <strong>and</strong> as much as possible free of any obstacles.


2.52<br />

2. To reduce the average distance water needs to be transported during the periods the sluice<br />

is able to spill water. This means that the main body of the volume stored in the internal<br />

system should be located as close as possible to the gate.<br />

Many ponds <strong>and</strong> channel sections are used for fish breeding. Nets are used to prevent the fish to be<br />

washed away. These nets might reduce the discharge capacity of the canals significantly when they<br />

are stretched from one side of the canal to the other. Here is a conflict of interest.<br />

Zoning might offer a compromise. If fish breeding can be restricted to the far end sections of the<br />

canals or even better in special ponds, the reduction in the drainage capacity of the system might be<br />

limited. Zoning is not necessary if the velocity of the flow in the canals of the internal system is low<br />

(less than 0.15m/sec) when the sluices are spilling at full capacity. In any case it is advisable to avoid<br />

nets right in front of the inflow of the sluice gate.


Chapter Three<br />

Effect of <strong>Cyclone</strong>s on Kolkata <strong>and</strong> Surroundings<br />

3.1. Hazard on urban habitation zones due to tropical cyclones<br />

The most important urban conglomeration within the easy reach of tropical cyclonic storms is the<br />

State Capital Kolkata. Contiguous with Kolkata proper is a large urban area that includes what is<br />

called the Greater Kolkata, including the relatively newly developed township of Bidhan Nagar (also<br />

called Salt Lake) <strong>and</strong> the upcoming Rajarhat development area. Presently, the Kolkata Municipal<br />

Corporation Area measures around 187.33 sq. km. According to the 2001 Census, the population of<br />

this region is around 45,80,544 <strong>and</strong> the area is divided into 15 Boroughs <strong>and</strong> 141 wards. According<br />

to historical according, Kolkata developed around three villages – Sutanuti, Kolkata, <strong>and</strong> Gobindapur.<br />

These villages occupied the following present day regional demarcations:<br />

CHAPTER 3<br />

Sutanuti<br />

Kolkata<br />

Gobindapur<br />

Chitpur, Baghbazar, Sobhabazar & Hatkhola<br />

Dharmatala, Bowbazar, Simla, Janbazar<br />

Hastings, Maidan & Bhowanipur<br />

The newer additions to the Kolkata municipality are the following:<br />

North<br />

South<br />

East<br />

Sinthi, Cossipore & Gughudanga<br />

Tollygunge, Khidderpore & Behala<br />

Salt Lake , Beliaghata & Topsia<br />

The city on the west is bound by the river Hooghly.<br />

As such, an intense rainfall as during a tropical cyclone over this region means a lot of runoff since<br />

much of the areas has been paved with little or no scope for natural infiltration. Ironically, the terrain<br />

of the l<strong>and</strong> slopes from the west, at the edge of the river Hooghly, towards the east. Further east are<br />

the scattered salty marsh l<strong>and</strong>s crisscrossed by the different tidal streams <strong>and</strong> channels that are<br />

connected to the Bay of Bengal to the south. The important creeks here are the Matla, Bidyadhari,<br />

Kultigong, Ichhamati, Raimangal, etc. Of course, a small portion of the city, mainly to the south <strong>and</strong><br />

closer to the river Hooghly drains to the west. However, whether the eastern tidal creeks, or the river<br />

Hooghly to the west, both are prone to water level variations of the ocean: the Bay of Bengal, to be<br />

precise. This rise of water levels in the rivers is due to either only tidal variations or that coupled with


3.2<br />

a storm surge caused by a tropical cyclone. Under such a condition, when a lot of water needs to be<br />

discharged off from the city, the outfalls are found to be blocked of by a high water level of the<br />

creeks. This renders the city waterlogged for many hours at a stretch at times. In order to underst<strong>and</strong><br />

the full system of Kolkata’s urban drainage <strong>and</strong> the reason for this kind of drainage congestion, it is<br />

necessary to go back in history <strong>and</strong> review the city’s drainage system from the beginning. The<br />

authors of this project report are grateful to Dr. S. S. Ganguly, retired Superintending Engineer,<br />

Irrigation <strong>and</strong> Waterways Department, Government of West Bengal for permitting the use of the<br />

following descriptions about Kolkata <strong>and</strong> its drainage proposals from the paper Ganguly (2006).<br />

3.2 Physiography <strong>and</strong> the drainage systems planned during the formative years of Calcutta<br />

(Kolkata)<br />

The physiographic setting of Kolkata (22° 34' N, 88° 22' E), both at the time of its foundation as well<br />

as in the present day, is dominated by the me<strong>and</strong>ering Hooghly river. Along the left bank of the river,<br />

which is also the western boundary of the city, there stretches a narrow belt of comparatively high<br />

natural levee, which varies in 2 to 5 kilometers. As a consequence of this natural levee general slope<br />

of the l<strong>and</strong> was from west to west. But during the initial years, drainage of the city was directed<br />

westwards to the Hooghly-river. A small creek, the Gobindapur creek was utilized. The creek ran<br />

from the Salt Lakes in the east via present day Beliaghata, Sealdah, Creek Row, Dharmatolla <strong>and</strong><br />

Government Place (North) before draining into the Hooghly below the Princep Ghat. This creek also<br />

served as a navigation channel <strong>and</strong> it is reported that Charnock used to collect toll from the boats<br />

moving in <strong>and</strong> out of the creek. But in course of a furious hurricane on Sept. 30, 1737 when 15<br />

inches (38.10 cm) of rainfall occurred in just 5 hours, 20,000 ships, barks, sloops, boats, canoes etc.<br />

were destroyed, the creek was rendered almost useless for navigation. In 1742, a seven mile long<br />

ditch was excavated along the present alignment of the Circular Road (APC Road & JPC Road) to<br />

keep the Maratha marauders at bay. This ditch aptly called the Marhatta ditch sounded the death<br />

knell of the creek. The natural <strong>and</strong> man made interferences took their tool on the not so efficient<br />

drainage system of the city. Very soon drainage congestion resulted <strong>and</strong> prolonged water logging<br />

was the order of the day. The consequences were so severe for the health <strong>and</strong> hygiene of the city<br />

that then Governor General Lord Wellesley (1766 - 1842) had to intervene. His now famous minutes<br />

of June 16, 1803, which recommended radical change in the direction of the principal channel of the<br />

Public Drains, read as follows:<br />

"The defects of the climate of Calcutta, during the part of the rainy season, may indeed be ascribed<br />

to the state of the drains <strong>and</strong> water courses <strong>and</strong> to the stagnated water remaining in the Town <strong>and</strong> its


3.3<br />

vicinity … And it is believed, that the level of the country inclines towards the salt-water lake, <strong>and</strong><br />

consequently that the principal channel of the Public Drains <strong>and</strong> water-courses ought to be<br />

conducted in that direction".<br />

Lord Wellesley's Improvement Committee better known as the Lottery Committee (1814-1836), as it<br />

drew its sustenance from Lottery Receipts, with a view to improving the situation, undertook<br />

extensive urban development works, by constructing roads <strong>and</strong> drains, filling up filthy tanks <strong>and</strong><br />

excavating new ones. Beliaghata canal still remains a useful contribution of the committee towards<br />

Kolkata's drainage system. The Lottery Committee was disb<strong>and</strong>ed in 1836 by recoil of the British<br />

public opinion, The Fever Hospital <strong>and</strong> Municipal Improvement Committee, which succeeded the<br />

Lottery Committee, was formed by Lord Auckl<strong>and</strong> in 1836. The duty of this committee was to<br />

deliberate on public health problems <strong>and</strong> to suggest remedial measures. The committee identified<br />

decrepit condition <strong>and</strong> inadequacy of drainage facilities as the primary reason for the widespread<br />

incidence of various severe diseases. From then onwards the drainage system of the city was<br />

modified or extended to meet the emerging requirements of the fast exp<strong>and</strong>ing city. The rapid rise in<br />

population brought with it fresh built up areas to contend with <strong>and</strong> to observe <strong>and</strong> take into account<br />

important changes talking place in the natural outfall system into which the drainage of the city would<br />

ultimately drain.<br />

3.3. Establishment <strong>and</strong> expansion of the city<br />

The name Kalikata had been mentioned in the rent-roll of the Mughal emperor Akbar (reigned 1556-<br />

1605) <strong>and</strong> also in the Manasa-mangal of the Bengali poet Bipradas (1495). The history of Calcutta as<br />

a British settlement dates from the establishment of a trading post there by Job Charnock, an agent<br />

of the English East India Company, in 1690. Charnock had previously had disputes with officials of<br />

the Mughal Empire at the river port of Hooghly <strong>and</strong> had been obliged to leave, after which he<br />

attempted unsuccessfully to establish himself at other places down the river. When the Mughal<br />

officials, not wishing to lose what they had gained from the English company's commerce, permitted<br />

Charnock to return once more, he chose Calcutta as the seat of his operations. The river Hooghly at<br />

this point was also wide <strong>and</strong> deep; the only disadvantage being the marshes to the east <strong>and</strong> swamps<br />

within the area which made the spot unhealthy. Moreover, before the coming of the English, three<br />

local villages Sutanati, Kalikata (or Kolkata), <strong>and</strong> Gobindapur, which were later to become parts of<br />

Calcutta (mentioned at the beginning of this section) had been chosen as places to settle by Indian<br />

merchants who had migrated from the silted-up port of Satgaon, farther upstream. The presence of


3.4<br />

these merchants may have been to some extent responsible for Charnock's choice of the site. By<br />

1696, when a rebellion broke out in the nearby district of Burdwan, the Mughal provincial<br />

administration had become friendly to the growing settlement. The servants of the company, who<br />

asked for permission to fortify their trading post, or factory, were given permission in general terms to<br />

defend themselves. The rebels were easily crushed by the Mughal government, but the settlers'<br />

defensive structure of brick <strong>and</strong> mud remained <strong>and</strong> in 1700 came to be known as Fort William. In<br />

1698 the English obtained letters patent that granted them the privilege of purchasing the zamindari<br />

right (the right of revenue collection; in effect, the ownership) of the three villages.<br />

Although Job Charnock initiated the installation of the Kuthighat on the river, it was his son who<br />

brought the Zemindary rights of the fledgling city, six years after the death of his father. In 1757, the<br />

area was 5076 Bighas <strong>and</strong> 18 3/4 Katthas. The area was bounded by the Chitpur Creek on the north,<br />

present day Lalbazar <strong>and</strong> the Chittaranjan Avenuae on the east, the Maidan <strong>and</strong> the Fort William on<br />

the south <strong>and</strong> the Hooghly river on the west. In 1794, Lord Cornwallis first defined the boundaries of<br />

the city. However it was in 1840, when for the first time the city limits were legally determined. These<br />

were the Marhatta ditch on the north, Circular road on the east, <strong>and</strong> the Lower Circular road,<br />

Kidderpur bridge, the Tolly's Nala up to the Hooghly river, which of course formed the boundary. In<br />

1840, the city limits were extended to include Entally, Bebiapukur, Ballyganj, Bhowanipur <strong>and</strong><br />

northern part of Tollyganj. In this way the city went on to exp<strong>and</strong> through inclusion of fresh suburban<br />

areas by stages in 1931, 1951 <strong>and</strong> 1984. Present area of the city is 187.33 sq. km. (72.33 sq miles).<br />

It may be noted that the Salt Lake area has now been brought under a separate municipality, called<br />

the Bidhan Nagar Municipality. The increase in population with time can be gauged from the Table 7:<br />

Table 3-1. Year wise Area <strong>and</strong> Population of Kolkata<br />

Year Area of the city Population Source <strong>and</strong> authorities<br />

1698 5076 bighas <strong>and</strong> 18 3/4 cottah<br />

(1861 acres)<br />

Wilson, Early, Annals I. p 286<br />

1746 5472 bighas <strong>and</strong> 1/2 cottah Holwell, Tracts, 3rd. Edition, p 209<br />

1762 6057 bighas <strong>and</strong> 13 cottahs Long, selections, no. 581<br />

1794 4997 acres/ 20.31 sq. km. A.K. Ray, A Short History of Calcutta<br />

l821 -do- 1,79,917 Assesor's estimate<br />

1831 -do- 1,87,081 Captain Steele's estimate<br />

1837 -do- 2,29,714 Captain Birch's estimate


3.5<br />

1840 -do- 3,61,369 Simms's estimate<br />

1850 -do- 4,13,182 Chief Magistrate's estimate<br />

1866 -do- 3,77921 Dowleans's census<br />

1872 -do- 447601 Chick's census (often considered unreliable)<br />

1876 5037 acres/20.48 sq. km. 4,29,535 Beverley's census<br />

1881 -do- 4,33,219 Census of 1881<br />

1891 13,133 acres/53. 39 sq. km. 4,68,552 Census of 1891<br />

1901 20,547 acres/83.52 sq. km. 8,47,796 Census of 1901<br />

1911 -do- 8,96,067 Census of 1911<br />

1951 28.34 sq. mile/73.40 sq. km. 25,48,677 Census of 1951<br />

1961 95.62 sq. km. 29,27,289 Census of 1961<br />

1971 98.79 sq. km. 31,48,746 Census of 1971<br />

1981 98.79 sq. km. 33,05,006 Census of 1981<br />

1991 187.33 sq. km. 43,99,819 Census of 1991<br />

2001 187.33 sq. km. 45,80,544 Census of 2001<br />

* Reduction in area is reportedly due to exclusion of Garden Reach<br />

It would be also interesting to have a look at the drainage pattern of the region from a map that<br />

approximately demarcates the regions at the beginnings of the British Colonial dominion in the Indian<br />

Subcontinent. Figure 10 shows a small portion of the map by William R. Shepherd, titled The<br />

Historical Atlas, in which it may be noticed that there are two distinct drainage channels flowing south<br />

<strong>and</strong> south east from Kolkata (Calcutta then) apart from the river Hooghly which flowed approximately<br />

towards the south west from Kolkata. In fact this provides a clue for the origin of the large tidal creeks<br />

like the Matla, Thakuran, Raimangal, etc., as mentioned in Chapter 2, but without any head water<br />

discharges. Actually, most of these creeks had been the erstwhile off-taking distributaries of the<br />

Ganga Delta, <strong>and</strong> had been quite actively conveying substantial discharges to carve out a wide<br />

channel. However, due to various reasons of which one could be human settlements, most of these<br />

channels lost their head water catchment flows. This trend has been continuing since, as has been<br />

apparent from the siltation of the river Hooghly, in he past decade. In fact, it was the reason why the<br />

Farakka Barrage was constructed to divert an assured quantity of water into river Hooghly <strong>and</strong><br />

keeping it navigable.<br />

A further detail may also be observed from the river Hooghly channels around Sagar Isl<strong>and</strong>. It might<br />

be seen that the eastern channel (now almost defunct) had been quite comparable in size, though<br />

smaller, than the main channel of the river at that point of time.


3.6<br />

Figure 3-1. Map of India during 1700 – 1790 showing clear drainage channels flowing towards south<br />

<strong>and</strong> east of Kolkata (Calcutta). From The Historical Atlas by William R. Shepherd, 1923.<br />

By courtesy of Ian Poyntz (website http://homepages.rootsweb.com/~poyntz/India/maps.html)


3.7<br />

3.4 Drainage Scheme of William Clarke<br />

The first major modifications in the drainage system came in the wake of the Sepoy Mutiny, 1857,<br />

when the responsibility of governance changed h<strong>and</strong>s from the East India Company to the Imperial<br />

throne of Engl<strong>and</strong> by the Proclamation of Queen Victoria. Meanwhile, the Calcutta Municipality had<br />

been established earlier in 1841 <strong>and</strong> the scheme for the "Water Carriage System" of the city as<br />

prepared by its first engineer, Mr. William Clarke, was sanctioned on April 20, 1859 <strong>and</strong> cost an<br />

estimated Rs. 34 lakh. The plans under the proposal were executed between 1860 <strong>and</strong> 1875. known<br />

in civic parlance as the "Town System" as separate from the "Suburban System" which came later,<br />

was combined sewerage cum drainage system, designed to drain an average rainfall of 6 mm (1/4<br />

inch) per hour with cent percent run-off in addition to 182 litres (40 gallons) of domestic sewage per<br />

capita per day. The underground drainage system comprised various sized conducts from 6.1 m (20<br />

ft.) dia. brick outfall sewers to 15 cm (6 inches) dia. pipe drains. The main sewers, draining 4600<br />

acres (around 18.50 sq. km.) of l<strong>and</strong> <strong>and</strong> running generally from west to east, were connected on the<br />

summit points to the penstocks opening into the Hooghly river to flush the sewers by the river water.<br />

The bottom points at the east extreme were connected to the intercepting sewer laid along the<br />

Circular Road. The underground drains measured around 2.44m high <strong>and</strong> 1.83m wide, with an eggshaped<br />

cross section. Sewage was lifted at the Palmer's Bridge pumping station to a high level<br />

sewer leading to Tangra <strong>and</strong> finally flowing into the Raja khal, an offshoot of the Bidhyadhari river,<br />

which was a thriving tidal channel at the time. Three storm-water overflows were provided running<br />

into the Circular canal. But the canal authorities resented this undesirable inflow into the canal <strong>and</strong><br />

finally further intercepting sewers were laid under the Canal West Road to intercept all these<br />

overflows <strong>and</strong> to lead them on to the Palmer's Bridge pumping station. Later, in 1896, the scheme<br />

was modified to include an additional drainage area, thus resulting in a total area of 19.2 sq. km.<br />

Most of the drainage network as established under the Clarke’s scheme is still giving service to the<br />

city, though the outfall into the river Bidhyadhari had to be changed later due to its high siltation. This<br />

aspect is discussed in section 2.4.7.<br />

3.5. Drainage scheme of Hughes <strong>and</strong> Kimber<br />

Hemmed in by the Hooghly river on the west <strong>and</strong> the Salt lakes on the east, the city grew largely in<br />

the south in preference to the north, where adequate l<strong>and</strong> was difficult to come by. To meet the<br />

drainage requirement of these freshly built up areas in the south, the Ballyganj pumping station was<br />

proposed. The Palmer's Bridge pumping station also needed augmentation in capacity to dispose a


3.8<br />

larger volume of sewage <strong>and</strong> drainage from the north. The next important scheme "The Bidyadhari<br />

Outfall Scheme" was drawn up by Hughes <strong>and</strong> Kimber in 1894, received administrative approval in<br />

1897 (January 11) <strong>and</strong> executive sanction in 1900 (June 18). The scheme which became operational<br />

in 1903 incorporated the establishment of Ballyganj pumping station <strong>and</strong> augmentation of the existing<br />

Palmer's Bridge pumping station <strong>and</strong> included the following:<br />

• High level sewers from the pumping stations to point "A" at Topsia further cast.<br />

• Excavation of Town <strong>and</strong> Suburban storm water reservoirs leading to Central lake channel at<br />

Bantola, protected by three sets of Stoney's gates - two for the Town system <strong>and</strong> one for the<br />

Suburban system.<br />

3.6. Development of the Calcutta Sewage <strong>and</strong> <strong>Storm</strong> Water Disposal Committee <strong>and</strong> the<br />

Calcutta Improvement Trust<br />

Even when Kolkata lost its preeminence as the capital of the British Raj in India in 1912, its<br />

expansion continued, as it still remained the most important center of economic <strong>and</strong> cultural activities<br />

in the country. Barring the period during which the World War I was raging (1914-18), a systematic<br />

approach for the improvement of drainage in greater Kolkata including Manicktola, Cossipur,<br />

Chitpore <strong>and</strong> adjoining areas was initiated by the newly formed "Calcutta Sewage <strong>and</strong> <strong>Storm</strong> Water<br />

Disposal Committee" (1922) <strong>and</strong> the Conference of Enginners convened by the Calcutta<br />

Improvement Trust (1911) in 1924. The emerging recommendations inter-alia included formation of a<br />

Main Drainage Board responsible for dealing with the problem of the disposal of the sewage <strong>and</strong><br />

surface water in Kolkata <strong>and</strong> its suburbs, greatest possible use of the existing storm water overflows<br />

to the Hooghly river, Tolly's Nullah <strong>and</strong> other adjoining waterways <strong>and</strong> establishment of new storm<br />

water overflows as necessary.<br />

3.7. Rivers <strong>and</strong> channels in <strong>and</strong> around Kolkata<br />

Kolkata is located in the lower part of the Bengal Delta <strong>and</strong> is naturally traversed by a number of<br />

interlaced distributaries emanating from the apex of the delta. Due to Kolkata's nearness to the sea<br />

face, most of these rivers <strong>and</strong> channels are tidal in nature. As the velocity of tide entering the mouth<br />

of a tidal river is high <strong>and</strong> as there is a vast reservoir of unconsolidated sediment in suspension along<br />

the sea face, the tide as it flows up these rivers is highly charged with sediment. Duration of ebb tide<br />

in a tidal river is much longer than the duration of the flow tide. As the same volume of water must


3.9<br />

ebb out as that flowed in, it follows that the average velocity of ebb is less than that of flow. Now the<br />

sediment carrying capacity of flow is a direct function of velocity. Hence it follows that the ebb tide is<br />

generally unable to carry back fully the sediment which has been carried up the tidal river during flow<br />

tide. Consequently sediment will get deposited on the channel bed. Even a slight deposition of<br />

sediment will go on accumulating, since the tides occur twice a day, throughout the year without a<br />

break. As a result, the channel bed will begin to rise <strong>and</strong> its carrying capacity will deteriorate. The<br />

deterioration will impede the propagation of tidal wave which would cause further deterioration <strong>and</strong><br />

the vicious circle would continue till the channel is completely dead.<br />

To maintain the life of a tidal channel it is necessary to provide additional supply of water not<br />

saturated with sediment, which has reserve capacity to pick up more sediment, to supplement the<br />

tidal flow during the ebb so as to scour out fully that has entered the channel during the flow tide.<br />

This can be done by (1) supply of upl<strong>and</strong> water, (2) local drainage or (3) throwing open additional<br />

spill areas. After the shifting of the main flow of the Ganga from the Bhagirathi to the Padma, upl<strong>and</strong><br />

supply of sediment free flow got severely reduced to the Bhagirathi <strong>and</strong> the other distributaries of the<br />

vicinity. The reduction was so severe that before Farakka Barrage diverted some flow into it, the<br />

Bhagirathy remained completely cut off from the Ganga for full nine months in a year. The second<br />

option is there; but local drainage is small in volume <strong>and</strong> seasonal in nature <strong>and</strong> so of very little<br />

consequence. And it is very difficult to implement the third option. Anthropogenic interventions like<br />

erection of marginal embankments for premature l<strong>and</strong> reclamation <strong>and</strong> erection of fisheries <strong>and</strong> brick<br />

fields have actually drastically reduced natural spill areas. Hence, it is extremely important to monitor<br />

the condition of these tidal channels in <strong>and</strong> around Kolkata <strong>and</strong> to ensure their sustenance.<br />

3.8. Deteriorating state of health of river Bidyadhari<br />

The recommendations (1924) of the Calcutta Improvement Trust were made with the supposition that<br />

the Bidyadhari river was capable of carrying off the entire volume of sewage <strong>and</strong> drainage effluent<br />

from the city. But unfortunatery; the river by this time had already shown signs of distrees. When the<br />

Central Lake Channel of the Bidyadhari river was selected as the city's outfall, the river was in fine<br />

shape. It was 1500ft. wide <strong>and</strong> 60ft. deep at low water. Bidhyadhari used to get a considerable<br />

supply of upl<strong>and</strong> water including a portion of the dry weather flow of the Ganga (Bhagirathy channel),<br />

which carried the major part of the flow of theGanga till the end of the 15th Century or early in the<br />

16th Century. It also received the upl<strong>and</strong> flow of the local channels like the Sunti, Nowi <strong>and</strong> Nona<br />

Gang. Even when the main flow of the Ganga was diverted, it seems probable that it still continued to


3.10<br />

receive, at least during the rains, a share of the Damodar flood, which had one of its outfalls into the<br />

Hooghly near Kalna till 1660 <strong>and</strong> near Noaserai till about the middle of the 18th Century, both the<br />

places being above the offtake of the Jamuna at Tribeni.<br />

Erection of embankments by the owners of local fisheries, construction of locks etc., premature <strong>and</strong><br />

reclamation by raising marginal embankments within the spill area spelt disaster for the river.<br />

Excavation of the Circular canal in 1830, New Cut canal in 1859, construction of Dhapa lock in 1883<br />

<strong>and</strong> Bhangar Khal lock at Bamangola in 1898 accelerated the deterioration of the river. Finally<br />

excavation of the Kristopur canal in 1910 sealed its fate by cutting off a large part of its basin area,<br />

thereby reducing the upl<strong>and</strong> discharge as well as the spill area. The rate of deterioration can be<br />

gauged from the following statement of cross-sectional area of the river channel.<br />

Table 3-2. Cross-Sectional Area of Bidhyadhari River Channel<br />

Year 1883 1904 1917 1926 1936<br />

Cross-sectional area (sq. ft.) 1 3674* 9702* 4700* 2440** 363**<br />

Equivalent area sq. m. 1270.4 901.2<br />

* Below 8.7 RL<br />

** Below 9.75 RL<br />

Hunter's Statistical Account of Bengal (1875) describes the Bidhyadhari river as follows: “The<br />

Bidyadhari is a large river with a very circuitous course in the district, it flows from the Sunderbans in<br />

the east, northwards past Harua (present day Haroa), where it takes the nake of the Harua Gang,<br />

after which it takes a bend to the west <strong>and</strong> joined by the Nona Khal; it then flows south-west to the<br />

junction of the Baliaghata <strong>and</strong> Tolly's Canals, <strong>and</strong> afterwards takes a south-easterly direction to the<br />

town of Canning. Here it is joined by the Karatoya <strong>and</strong> the Atharabanka, the united streams flow<br />

southwards through the Sunderbans as the Matla River, debouching upon the Bay of Bengal under<br />

that name.”<br />

L.S.S.O' Malley's Bengal District Gazetters, 24 Parganas, 1914 further states: “The portion of the<br />

Bidhyadhari near Calcutta which at present serves as an outfall channel for the storm water <strong>and</strong><br />

sewage of the city, has for some years past been silting up at a rapidly increasing rate. The<br />

acceleration of the silting process is attributed mainly to works in connection with local fisheries <strong>and</strong><br />

to the reclamation of portions of the Salt Water Lakes for rice cultivation, the effect being to decrease<br />

the spill of water from the river over the adjoining l<strong>and</strong> <strong>and</strong> consequently, to increase the deposit of<br />

silt in the river bed. Other contributory causes have been the construction of the Dhapa lock, the<br />

closing of tributaries in each of which the tide used to flow <strong>and</strong> ebb freely, <strong>and</strong> the canalization of the


3.11<br />

Bhangar Khal. Observations taken between 1901 <strong>and</strong> 1912 show that, a mile below Bamanghata, the<br />

bed of the river has risen nearly 25 ft. in 8 years, while in the section immediately below Bamanghata<br />

lock the cross-sectional area has been reduced from 7700 sq. ft. to 3870 sq. ft.”<br />

Analysing the situation O.C.Lees. C.S.I., Special Officer, Hooghly-Bidyadhari Canal Enquiry<br />

Committee, surmised that the Bidyadhari has a very short remaining lease of life, <strong>and</strong> that in six<br />

year's time it will be useless as an outfall channel for the sewage of Calcutta unless remedial<br />

measures are taken. Bidyadhari River Channel was officially ab<strong>and</strong>oned by a notification of the Govt.<br />

of Bengal in 1928.<br />

It may be of interest to note the drainage of Kolkata <strong>and</strong> its environs from a map (Figure 3-2) taken<br />

from Imperial Gazetteer of India. New edition, published under the authority of His Majesty's<br />

Secretary of State for India in Council. Oxford: Clarendon Press, 1907-1909. It may be observed from<br />

the map that the river Bidyadhari had still been rather healthy at that time, draining into the Matla, on<br />

which flourished the smaller port of Canning.<br />

Figure 3-2. Map of Kolkata <strong>and</strong> its environs during by around 1907-1909 showing the<br />

Beliaghata canal <strong>and</strong> the Katta Khal (Excavated Channel) draining the city of Kolkata.<br />

By courtesy of Ian Poyntz (website http://homepages.rootsweb.com/~poyntz/India/maps.html)


3.12<br />

3.9. Drainage scheme of Dr. B.N. Dey<br />

As a result of loss of the Bidyadhari, the only available outfall channel, drainage prospect of Kolkata<br />

became a matter of grave concern. A fresh suitable outfall channel had to be identified in the vicinity<br />

in place of the decrepit Bidyadhari river. The city had grown in the meantime <strong>and</strong> so the internal<br />

system of collection <strong>and</strong> conveyance of the drainage became woefully inadequate. Against this<br />

disconcerting backdrop, Dr. Birendra Nath Dey (1891-1963), who later became the Chief Engineer,<br />

Calcutta Corporation (1929-43) drew up a scheme incorporating augmented facilities for internal<br />

drainage, as well as a new outfall channel around 30 Km. farther east in Kultigang, a tidal creek,<br />

which ultimately flows into the Bay of Bengal via the Raimangal estuary.<br />

Kultigang which now constitutes the main outfall of Kolkata's drainage opened up much later than the<br />

Bidyadhari. In fact the former feeders of the Bidyadhari like the Nowi, Sunti <strong>and</strong> Nonagang, from<br />

North 24-Parganas, changed their allegiance to the Kultigang. The Circular-Beliaghata-Newcut-<br />

Kestopur <strong>and</strong> Bhangar Kata system emanating <strong>and</strong> catering to rapidly growing urban<br />

conglomerations join the Kultigang. The SWF <strong>and</strong> DWF channels of Kolkata Corporation including<br />

the discharge of the Tollygunj-Panchannagram outfalls into the Kultigang at Ghusighata. As<br />

urbanization continues in eastern Kolkata further volume of flow will outfall into Kultigang.<br />

The salient features of the Kulti outfall scheme are as under:<br />

From Topsia lock water is directed by gravity up to Ghushighata through a 34 km long lined channel,<br />

where it discharges into Kultigang through a sluice. This is the dry weather flow (DWF) channel.<br />

From the Palmer Bridge (also often referred to as Palmer bazaar) pumping station there is a 7.47 km<br />

long Town Head Cut (THC) drainage channel leading to the <strong>Storm</strong> Weather Flow, or SWF, channel.<br />

This channel meets the DWF channel at Bantala where there is a primary sedimentation tank to<br />

partially purify the effluents.<br />

From the Ballygunje pumping station there is a 7.163 km long storm water floe drainage channel,<br />

known as the Suburban Head Cut (SHC) which meets the THC at Bantala <strong>and</strong> flows as a combined<br />

<strong>Storm</strong> Water Flow Channel, or SWFC.<br />

The 1.829 km long storm water channel emanating from the Dhapa Lock pumping station meets the<br />

THC at Makalpota. The bottom width of the SWF channel is 36.58m <strong>and</strong> has a carrying capacity of<br />

76.47 cumec. The DWF channel is concrete lined <strong>and</strong> has a carrying capacity of 18.97 cumec. The<br />

SHC is 34km long <strong>and</strong> at Ghushighata, it outfalls into the river Kultigang through two regulators<br />

having 20 <strong>and</strong> 16 sluice gates, respectively.


3.13<br />

It may again be of interest to note the formation of the new drainage channels at the time of the<br />

establishment of the proposals of Dr. B. N. Dey. Attention is drawn to a map of Murray’s h<strong>and</strong>book<br />

(1924) provided by Jill Grey <strong>and</strong> taken from the website of Ian Poyntz under the maps of Bengal<br />

Presidency at http://homepages.rootsweb.com/~poyntz/India/maps.html, presented in Figure 3-3. It<br />

may be observed from the map that the Krishnapur Canal (often referred to now as the Keshtopur<br />

Khal) <strong>and</strong> the New Cut Canal had been in existence then. The proposed Gr<strong>and</strong> Trunk canal is now<br />

what is the Bagjola Canal. The salt lakes to the east of Kolkata (now partly Bidhan Nagar) is seen to<br />

be connected to the tidal creeks, as inferred from the note stating the salt water lakes to be tidal.<br />

Figure 3-3. Map of Kolkata <strong>and</strong> surroundings by 1924<br />

By courtesy of Ian Poyntz (website http://homepages.rootsweb.com/~poyntz/India/maps.html)


3.14<br />

3.10. CMPO <strong>and</strong> KMDA (originally CMDA)<br />

The first Master Plan for Water Supply <strong>and</strong> Drainage within Calcutta Metropolitan District for the<br />

period 1966-2001, was prepared by the Calcutta Metropolitan Planning Organization (CMPO) in<br />

August, 1966 with the assistance of an Engineering Consortium, comprising Metcalf & Eddy Ltd. <strong>and</strong><br />

Engineering-Science Inc. of USA. The Master Plan included technical <strong>and</strong> other information of the<br />

systems, analysis of the present status <strong>and</strong> recommendations for future programmes. These are in<br />

short as follows:<br />

• Destription of the existing infranstructure relating to water supply, sewerage <strong>and</strong> drainage of<br />

the CMP district.<br />

• Analysis of the main problems encountered in providing satisfactory service with regard to<br />

water supply, sewerage <strong>and</strong> drainage.<br />

• Exploration of alternative sources of water from surface as well as ground water.<br />

• Present steps to improve the services in the short term should be integrated with long term<br />

proposals to cater to the entire CMD area.<br />

• Detailed programming of the proposals including phasing of the main elements <strong>and</strong><br />

recommendations for competent management circumscribing financial <strong>and</strong> legal aspects.<br />

In the beginning proposals of the CMPO had been implemented by different agencies <strong>and</strong><br />

departments of the state govt. Later on Calcutta Metropolitan Development Authority, CMDA was<br />

established for implementation.<br />

3.11. Present Status of the city’s drainage system<br />

The Kolkata Metropolitan area has been divided into 25 drainage basins, wherefrom the drainage is<br />

carried off through, a number of natural or man-made channels into the natural trunk drains which are<br />

basically tidal rivers <strong>and</strong> creeks. The present paper limits its scope to the basins <strong>and</strong> channels which<br />

have some bearing on the drainage of the Kolkata Corporation area <strong>and</strong> its immediate environs.<br />

Even now the major <strong>and</strong> more important parts of the city are drained by two old systems the Town<br />

system <strong>and</strong> the Suburban system.


3.15<br />

3.11.1. The Town System<br />

The Town System which is the oldest of the two systems, comprises a set of feeder <strong>and</strong> trunk sewers<br />

(running west to east in general), straddling the underground of the old city that draw the sewage <strong>and</strong><br />

drainage of the area, measuring about 19.3 sq. km. The trunk sewer running along the APC Ray road<br />

from north to south also functions as an intercepting sewer for the trunk sewer like the Baghbazar<br />

Street sewer, the Sovabazar Street-Grey Street sewer, the Nimtolla Ghat Street-Beadon Street<br />

sewer <strong>and</strong> the Kolutolla Street-Mirzapore Street sewer. The AJC Bose Road trunk sewer starts at<br />

Kidderpore Road close to the Hooghly river runs eastward up to Beckbagan <strong>and</strong> then turns<br />

northward to Moulali. The Lenin Sarani sewer starts near the Hooghly river runs eastward to Moulali.<br />

The three trunk sewers viz. the APC Ray Road, the AJC Bose Road <strong>and</strong> the Lenin Sarani meet at<br />

Moulali junction <strong>and</strong> the combined flow passes further eastward through a special sewer section of<br />

20ft. x 15ft.3in., known as the Town Outfall to the Palmer's Bridge Pumping Station (PBPS), which<br />

has an installed capacity of pumping 1720 cusecs. One sewer from Convent Road leads to the PBPS<br />

directly.<br />

A number of subsidiary pumping stations have been constructed within the drainage area to relieve<br />

drainage congestion in chronically waterlogged areas. These are: (1) Belgachia (2) Manicktala (3)<br />

Thanthania.<br />

It may be pointed out however that part of the Maidan area is now drained directly into Tolly's Nullah,<br />

similarly the Thanthania PS delivery sewer discharges directly into the Circular Canal.<br />

3.11.2. The Suburban System<br />

The Suburban System developed as a result of later extension of the city towards south. Total<br />

drainage area is 25.69 sq. km. In all there are six trunk sewers that convey the sewage <strong>and</strong> drainage<br />

of the area, with the help of the feeder branch <strong>and</strong> lateral sewers, to the Ballyganj Drainage Pumping<br />

Station (BDPS) with an installed capacity of 1275 cusecs. Three trunk sewers run from west to east.<br />

These run below (1) Rashbehari Avenue (2) Hazra Road, <strong>and</strong> (3) Puddapukur Road. Two trunk<br />

sewers run from north to south. These are (4) CIT Road (5) Tiljala Road. The sixth one is the one<br />

running under Park Street <strong>and</strong> drains part of the Town System area.<br />

In this system also there are a number of subsidiary pumping stations that relieve the individual<br />

chronically waterlogged areas. These are : (1) Chelta Lock PS (2) Mominpore PS (3) Jodhpur Park<br />

PS (4) Nimak Mahal PS (5) Kalighat PS. Due to some problems in the system the <strong>Storm</strong> Weather


3.16<br />

Flows are diverted to the local surface drains like the Tolly's Nullah, Chetla Boat Canal, the<br />

Panchannagram Canal <strong>and</strong> the Hooghly river.<br />

3.11.3 Later Additions<br />

The Dhapa Lock Pumping Station (DLPS) receives the sewage <strong>and</strong> drainage from the later<br />

developments of North Eastern part of the city. There are four trunk sewers in the system. These are<br />

(1) CIT Road, from Kankurgachi to Ultadanga (2) Ultadanga Main Road (3) CIT Road <strong>and</strong> Hem<br />

Naskar Road (4) Beliaghata Main Road. The combined discharge of the first two trunk sewers is<br />

conveyed to the DLPS via Ultadanga Drainage PS (UDPS). The remaining two meet at the CIT Road<br />

junction <strong>and</strong> the combined flow runs under Beliaghat Main Road into the high level delivery sewer of<br />

the UDPS to be finally led into the DLPS. There are a few Box Drains in the area that discharge into<br />

the Kestopore Canal <strong>and</strong> the Beliaghata Canal. Tangra-Topsia System in the Central Eastern fringe<br />

of the city caters to a low lying area which suffers from frequent waterlogging. Drainage of the area<br />

mesuring about 5.17 sq. km. is effected through four pumping stations viz. (1) Topsia PS, (2)<br />

Chingrighata PS, (3) Pagladanga PS, <strong>and</strong> (4) Kulia Tangra PS.<br />

Very recently the Jadavpore <strong>and</strong> South Suburban Municipalities have been brought within the<br />

jurisdiction of the Kolkata Municipal Corporation. For these latter areas the Tollyganj<br />

Panchannagram, Monikhali, Churial, Keorapukur <strong>and</strong> Tolly's mullah etc. have to be properly<br />

resectioned.<br />

3.11.4. Formal distribution of administrative wards into drainage basins<br />

The city of Kolkata may be divided into the following six major drainage areas:<br />

1. Northern, or the Cossipore region<br />

2. Central, or the town region<br />

3. South-Central, or the suburban region<br />

4. Southern, or the Tollygunge <strong>and</strong> Jadavpur regions<br />

5. Eastern, or the Maniktola region<br />

6. South-suburban area, or the Behala <strong>and</strong> Garden-Reach regions


3.17<br />

Different area based drainage scenario is presented in Table 3-4.<br />

Table 3-4. Kolkata drainage regions <strong>and</strong> corresponding Municipality Wards<br />

Sl. No. Region<br />

Area, in<br />

km.<br />

Wards<br />

Drainage system<br />

1 City proper 104 1-100 SWF, Beliaghata canal, Bagjola canal<br />

2 Jadavpur 40 101-114 Tollygunje – Panchannagram canal. This<br />

canal discharges to the SWF at Chowbhaga<br />

pumping station outfall<br />

3 South<br />

suburban region<br />

30.38 115-132 Chadial <strong>and</strong> Monikhali canals, which outfall to<br />

Hooghly<br />

4 Garden Reach 12.95 133-141<br />

Total 187.33 141<br />

In the above mentioned list, Cossipore area’s drainage is partially through the Bagjola canal <strong>and</strong> the<br />

remaining through the river Hooghly. The Bagjola canal starts from the Dunlop Bridge on the B T<br />

Road <strong>and</strong> outfalls at Ghushighata on the river Kultigang through a sluice. The total length of the canal<br />

is around 38 kms. The important contributing branches of this canal are the Udaipur canal, Sonai<br />

canal, Cantonment canal. The highly congested areas of Noapara Akshay Mukherjee Road,<br />

Bediapara, Jessore Road, Dumdum Road, VIP Road, drain into this canal. The total cumulative<br />

drainage area for the Bagjola canal is around 164 sq. km. The stretch of the canal from its origin up<br />

to the VIP road is called the Upper Bagjola canal, whose length is 9.23 km <strong>and</strong> drains around 49.20<br />

sq. km. From the VIP road up to the outlet, the name of the canal is Lower Bagjola canal, whose<br />

length is 28.818 km <strong>and</strong> drains around 114.80 sq km. The upper reach of the canal drains the serving<br />

regions directly, but the central <strong>and</strong> the lower portions of its drainage area outfall their storm water<br />

into the canal through the Dutta Bagan pumping station. The catchment area to the west of the B T<br />

Road drains to the river Hooghly. The Lower Bagjola canal is connected to the Bhangar kata khal at<br />

three places. The first of this is through through link near the Mision Bazar at Kestopur through a linkregulator.<br />

The second connection is through the Jowal Bhanga canal at Rajarhat <strong>and</strong> the third is in


3.18<br />

the Bhangar region through the Chowreswar canal. The different branches of the Lower Bagjola<br />

canal are named as BB1, CC1, DD1, EE1,, EE2, <strong>and</strong> XX1.<br />

The central drainage catchment of the city lies between Galiff Street on the north, the park Street to<br />

the south <strong>and</strong> the region between the Hooghly on the west <strong>and</strong> the Circular canal / the Sealdah-<br />

Ballygunje railway line on the east.<br />

The South-Central or the suburban region extends from A J C Bose Road, Park Street <strong>and</strong> the<br />

Topsia Road on the north, up to Ballygunje – Budgebudge Railway line on the south. A portion of the<br />

discharge of the Ballygunje pumping station on the DWF <strong>and</strong> the SWF channels during monsoon<br />

rains is also sometimes directed towards the river Hooghly.<br />

The storm water of the Southern or the Tollygunge <strong>and</strong> Jadavpur drainage regions, is partially<br />

through the Tolly nullah <strong>and</strong> partially through the Tollygunge – Panchannagram canal that outfalls<br />

into the Suburban Head Cut.<br />

The drainage of the Eastern, or the Maniktola region, is partially through the Dhapa Lock Pumping<br />

station <strong>and</strong> partially through the Krishnapur canal.<br />

The South-suburban area, or the Behala <strong>and</strong> Garden-Reach regions, drain into the river Hooghly<br />

through the Chadial <strong>and</strong> Monikhali canals, which have sluices at their outlets.<br />

3.12. Rainfall scenario in the city of Kolkata<br />

The rainfall characteristics of the city of Kolkata vary from an average of 1610 mm at Alipore to 1510<br />

mm at Dumdum. At times, the daily rainfall exceeds 300 mm. Some of the excessive rainfalls<br />

recorded for the city are provided in the following table.<br />

Table 3-5. Amount <strong>and</strong> duration of some exceptional rainfall over the city of Kolkata<br />

Date Rainfall in mm Duration<br />

30 September 1738 381 5 hours<br />

14 August 1788 253 20 hours<br />

20 June 1893 213 36 hours<br />

19 September 1990 369 24 hours


3.19<br />

20 September 1990 275 24 hours<br />

13 May 1913 25 10 minutes<br />

26 September 1978 to<br />

1 October 1978<br />

735.30<br />

5 days<br />

(Maximum on 28 Septem360.6<br />

1978)<br />

3 June 1984 to<br />

499.25<br />

4 June 1984<br />

23 September 1999 to<br />

334.10<br />

25 September 1999<br />

It may be observed that though the drainage system of the city of Kolkata, as designed by William<br />

Clarke, was based on a probable rainfall of a quarter inch (6 mm) of rainfall an hour, which is<br />

equivalent to about 6 inches (150 mm) of rainfall in a day, there have been occasions when the<br />

rainfall has exceeded this amount leading to serious congestion of the storm disposal system leading<br />

to water logging in the city. There are further reasons also to contribute to increasing instances of<br />

water logging condition in the city, <strong>and</strong> these have been discussed in the following paragraph.<br />

3.13. Nature <strong>and</strong> problems of Kolkata's Drainage System<br />

The city of Kolkata <strong>and</strong> its surrounding urban spaces are confronted with serious problems of<br />

waterlogging as a result of cyclonic activities due to the following reasons.<br />

At the time of high cyclonic activity over the region causes a huge accumulation of runoff water,<br />

which has been increasing over the years due to paving of natural ground as a result of rapid<br />

urbanisation. This water is drained, as mentioned before, through nearly 30km long channels to the<br />

east of the city <strong>and</strong> discharged into the river Kultigang, which is connected to the Bay of Bengal<br />

through the tidal creek of Raimangal. As such, at the outfall point of the water channels, the normal<br />

tidal variation is such that a flow by gravity into Kultigang is only possible for only about 7 to 8 hours a<br />

day. Naturally, at the time of a cyclone, the general water level of the tidal creeks rise due a rise of


3.20<br />

the ocean level as a result of storm surges. This causes flow accumulation in the drainage channels,<br />

which in turn, causes backflow into the city.<br />

The waterlogging problem may be ascribed to the typical geographical feature of the city being of<br />

saucer type, the central portion being of lower elevatron <strong>and</strong> pumping is required to remove the<br />

waterlogging as there is hardly any scope for gravitational drainage. The eastward drainage does not<br />

pose much serious problems while the areas, viz. Amherst Street, Thanthania, Chitpur, Free School<br />

Street, Camac Street, Sarat Basu Road where sewers have a north-south alignment have chronic<br />

waterlogging problem. The inadequate road surface area of the city of only 6-8 percent aggravates<br />

the waterlogging problem. The storm water from the buildings instead of draining into the sewers<br />

through the yard gullies is discharged onto the inadequate road surface. Moreover, the gully pits on<br />

the roads, through which the water should drain out are inadequate in number <strong>and</strong> often choked<br />

owing to lack of maintenance. Further, rain washes solid waste to the mouths of gully pits, blocking<br />

the free flow of water into them. Besides, the city sewer system has no separate dry weather <strong>and</strong><br />

storm weather flow arrangement thus resulting in major <strong>and</strong> minor underground trunk sewer lines<br />

being badly silted up for absence of cleaning at regular intervals <strong>and</strong> this has made the reduction in<br />

flowing capacity of storm weather flow considerably to the extent of about 30 percent.<br />

3.14. Drainage of Bidhan Nagar (Salt Lake)<br />

Salt lake is divided into three zones namely Sector I, Sector II, <strong>and</strong> Sector III which have different<br />

topographical <strong>and</strong> consequential drainage features. While storm water of Sector I, <strong>and</strong> Sector II flow<br />

into Kestopur Canal by gravitation, nearly 40 percent of the drainage of Sector III is effected by the<br />

pumping station at DE-block <strong>and</strong> rest through gravitation flow into Eastern Drainage Canal. It can<br />

easily be understood the vital part these two canals namely Kestopur <strong>and</strong> Eastern Drainage Canal<br />

play in overall storm water management of Salt Lake. Since both these two canals originate from<br />

Kolkata desilting of these two canals will contribute a lot for swift drainage of Salt Lake, in addition to<br />

the benefit of Kolkata Municipal area.<br />

It must be remembered that Bidhan Nagar was formed by filling up of low-lying marshy l<strong>and</strong>s with<br />

s<strong>and</strong> from the river Hooghly. Not all places of the reclaimed l<strong>and</strong> was filled up the same extent.<br />

Hence, certain portions of the township which are not that high suffer fromdrng congestion. Also, the<br />

drainage channels of Kestopur Canal <strong>and</strong> the Eastern Drainage Canal have silted up considerably<br />

from their original design sections, resulting in backflow of the township’s internal storm water<br />

drainage.


3.21<br />

3.15. Kolkata city’s drainage system – a closer look<br />

The physiographical setting of Kolkata is such that the l<strong>and</strong> slopes from the higher banks of the river<br />

Hooghly towards the marshl<strong>and</strong>s of the east that connects to the network of rivers <strong>and</strong> channels<br />

draining to the Bay of Bengal. In fact, there are pockets in the city that are rather low-lying <strong>and</strong> water<br />

has to be evacuated from the storm drainage system (underground in most parts of the city proper)<br />

by pumping. It has been observed that there is a general trend of water logging in the regions which<br />

have a north – south alignment of the underground drainage pipes, some of the areas being as<br />

under:<br />

1. Amherst street<br />

2. Thanthania<br />

3. Chitpur<br />

4. Free School street<br />

5. Camac street<br />

6. Sarat Bose Road<br />

The problem is aggravated by the fact that streets <strong>and</strong> roads occupy just about 6 to 8 percent of the<br />

city area. And for many of the large houses, the roof top or courtyard rainfall water is led to the road<br />

side gutter instead of being directly led to the underground drainage system. The road side gutters<br />

are not always sufficient in size <strong>and</strong> are often covered with garbage, thus causing blockage of the<br />

water from entering the pipes below.<br />

It must also be reiterated here that the drainage system that still supports the flushing of the storm<br />

water in the Kolkata city proper is based on the original design of William Clarke, with some additions<br />

in the later years, Hence, there has really been not much of augmentation of the original system <strong>and</strong>,<br />

on the other h<strong>and</strong>, there has been a steady deterioration of the system by way of sediment<br />

deposition. It is understood that the cross sectional areas of these pipes have been reduced to 30<br />

percent of their capacities, in many stretches. Some details of the pumping system <strong>and</strong> the open<br />

drainage channels, or khals as they are called in local parlance, is given in the following sections:<br />

3.15.1. Pumping arrangements for the drainage system<br />

The saucer shaped topography of the city of Kolkata has led to the establishment of a number of<br />

pumping stations to flush out the storm water. These are maintained by different agencies, <strong>and</strong> a list<br />

of some of the important pumping stations is given in Tables 3-6, 3-7 <strong>and</strong> 3-8.


3.22<br />

Table 3-6. Major pumping stations for the city of Kolkata<br />

Sl. No. Location Capacity Working under<br />

1 Palmer bridge (bazaar)<br />

Est.- 1876<br />

2 Ballygunje<br />

Est.- 1890<br />

3 Dhapa lock<br />

Est. 1958<br />

<strong>Storm</strong> water pumps: 4 units<br />

@ 250 each = 1000 cusec<br />

Waste water pumps: 8 units<br />

with total capacity of 750<br />

cusec<br />

<strong>Storm</strong> water pumps: total<br />

capacity of 850 cusec<br />

Waste water pumps: total<br />

capacity of 825 cusec<br />

<strong>Storm</strong> water pumps: total<br />

capacity of 800 cusec<br />

Waste water pumps: total<br />

capacity of 80 cusec<br />

Kolkata Municipal<br />

Corporation<br />

Kolkata Municipal<br />

Corporation<br />

Kolkata Municipal<br />

Corporation<br />

4 Topsia Total capacity of 205 cusec Kolkata Municipal<br />

Corporation<br />

5 Chowbhaga (original) Total capacity of 450 cusec Irrigation <strong>and</strong><br />

Waterways<br />

Directorate<br />

6 Chowbhaga (additional - I) Total capacity of 500 cusec Irrigation <strong>and</strong><br />

Waterways<br />

Directorate<br />

7 Chowbhaga (additional -<br />

II)<br />

Total capacity of 500 cusec<br />

Irrigation <strong>and</strong><br />

Waterways<br />

Directorate<br />

8 Keora Pukur Total capacity of 200 cusec Irrigation <strong>and</strong><br />

Waterways<br />

Directorate<br />

Table 3-7. Minor pumping stations for the city of Kolkata<br />

Sl. No. Location Total Capacity Working under<br />

1 Birpara 50 cusec Kolkata municipal authority<br />

2 Maniktala 24 cusec Kolkata municipal authority<br />

3 Ultadanga (Old) 20 cusec Kolkata municipal authority<br />

4 Pagladanga 40 cusec Kolkata municipal authority<br />

5 Kalighat 35 cusec Kolkata municipal authority<br />

6 Kulia tangra 30 cusec Kolkata municipal authority<br />

7 Lake town 21 cusec Public Health Engineering<br />

Department<br />

8 Cossipore – Dumdum 156 cusec Public Health Engineering<br />

Department<br />

9 Chingrighata 100 cusec KMWSA<br />

10 Hrishikesh Park 30 cusec KMWSA


3.23<br />

Table 3-8. Lifting / boosting pumping stations<br />

Sl. No. Location Total Capacity Working under<br />

1 Belgachia (R G Kar Hospital) 28 cusec Kolkata municipal authority<br />

2 Ultadanga (New) 440 cusec Kolkata municipal authority<br />

3 Maniktala (crossing of Raja<br />

12 cusec Kolkata municipal authority<br />

Dinendra Street <strong>and</strong><br />

Vivekan<strong>and</strong>a Road)<br />

4 Nimak mahal (Near circular 100 cusec Kolkata municipal authority<br />

Garden Reach road)<br />

5 Mominpur 6 cusec Kolkata municipal authority<br />

6 Chetla lock 6 cusec Kolkata municipal authority<br />

7 Jodhpur park 20 cusec Kolkata municipal authority<br />

3.15.2. Open drainage system for conveying Kolkata’s storm <strong>and</strong> dry water flow to their<br />

respective outfalls<br />

The city itself has a network of underground drainage pipes, as mentioned above, but as the flow is<br />

directed eastwards, these are discharged into open surface drains. Some of the drains are within the<br />

city, but there are three major drains, rather canals, that drain the entire city discharge into the River<br />

Kultigang, about 35 kms from the city. There are a couple of other drainage channels that flush out a<br />

portion of the city’s water to River Hooghly. A brief description of each of these channels are given in<br />

this section.<br />

The Northern part of the city discharges about 300 cusecs (8.50 cumecs ) of water under normal<br />

rainfall into Bagjola Khal through several pumping stations, for the southernmost areas like Behala,<br />

Garden Reach, the drainage is effected in river Hooghly through Churial Khal, Manikhali Khal,<br />

Tolly's Nullah etc. though the tidal effect in Hooghly river causes considerable period of blockage<br />

during drainage time. Similarly, the city's main drainage outfall system, viz. SWF channel consisting<br />

of SHC <strong>and</strong> THC, which outfall into river Kulti about 35 KM from Ballygunge Pumping Station is also<br />

a tidal one, the drainage can be effected only for 51/2 hours in every 12 hour cycle on an average.<br />

Moreover, the SWF system mainly catering city drainage in course of its long journey, also receives<br />

drainage water from city contiguous part <strong>and</strong> also from rural <strong>and</strong> urban areas. The domain of<br />

drainage under SWF system from the metropolis of Kolkata <strong>and</strong> the rural areas may be summarised<br />

as in the following table.


3.24<br />

Table 3-9. Drainage basin areas<br />

1. City proper (including Boichitala) 80% of 104 sq km = 83sq.km. Calcutta contiguous<br />

2. Jadavpur/Tollygunge Panchanangram Basin = 38 sq.km( 95% ) Subarban areas 121<br />

3. South Salt Lake Basin = 36 sq.km.<br />

4. Kheyadah Basin =8.50 sq.km.<br />

Contiguous urban areas<br />

177 sq.km.<br />

5. Sumidgiri Basin =18 sq.km.<br />

6. Karaidanga Basin = 10.75 sq.km.<br />

7. Dudhbibi Basin = 42.75 sq.km.<br />

8. Rajapur Basin II - 11 .00 sq.km.<br />

9. Juljulgachi Basin = 40.00 sq.km.<br />

10. Laugachi Basin = 10.25 sq.km.<br />

Total 298 sq.km. Say 300<br />

SWF channel system<br />

According to the present scenario, the <strong>Storm</strong> Water Flow <strong>and</strong> Dry Weather Flow Channels serve<br />

as drainage <strong>and</strong> sewerage arteries of about 144 Sq. Km. of the city of Kolkata including Tollygunge<br />

Panchannagram Basin ( T.P. Basin ) <strong>and</strong> about 175 Sq. Km. of rural area along with its flow line<br />

towards East up to River Kultigong. The Three separate Channel Systems are:<br />

Town Head Cut (T.H.C.) Channel having a length of 7.47 Km. T.H.C. starts from the outfall of Palmer<br />

Bazar Pumping Station <strong>and</strong> meets S.H.C. at Bantala Regulator.<br />

Feeder Channel to T.H.C. having a length of 1.829 Km. This feeder starts from Dhapa Lock Pumping<br />

Station <strong>and</strong> meets T.H.C. at Makalpota.<br />

Suburban Head Cut ( S.H.C.) Channel having a length' of 7.163 Km. S.H.C. starts from Ballygunge<br />

Pumping Station <strong>and</strong> receives T.H.C. at the downstream of Bantala Regulator.<br />

The system also receives storm water from TP Basin through 3 nos. pump houses at Chowbhaga.<br />

The two Channels i.e. T.H.C. <strong>and</strong> S.H.C. meet at Bantaia <strong>and</strong> form the S.W.F. Channel which<br />

reaches River Kultigong at Ghushighata. The combined length of S.W.F. Channel system is about 44<br />

Km. Other relevant data of the channel are as follows:<br />

Length of SWF channel from Bantola to Kulti<br />

27.20 km<br />

Length of Town Head Cut (T.H.C.) channel<br />

7.47 km<br />

Length of channel from Dhapa Lock Pumping Station to the meeting point of T.H.C. 1.829km<br />

Length of Suburban Head Cut (S.H.C.) channel<br />

7.163 km<br />

Total<br />

43.662 km<br />

There exists a huge difference between the present position <strong>and</strong> the old design considerations.<br />

Virtually it has become inadequate leading to the necessity of providing additional measures for


3.25<br />

alleviating drainage congestion. The reasons for drainage problems of this system may be<br />

summarized as follows:<br />

• Drainage lockage while High Tide <strong>and</strong> rising of low water level due to rise of river<br />

bed governing the outfall efficiency in an adverse way.<br />

• The old channel section has nearly remained unchanged n spite of big changes<br />

in drainage load.<br />

• Increase of population density resulting in additional loads.<br />

• Huge change in l<strong>and</strong>-use-pattern<br />

• Drastic reduction in spill areas.<br />

The drainage discharge mainly of the following Boroughs is being served by the SWF channel at<br />

present. Part of Borough IV, Part of Borough V, Part of Borough VI, Part of Borough VII, Part of<br />

Borough VIII, Part of Borough X, Part of Borough XI <strong>and</strong> Borough XII. During heavy rainfall,<br />

substantial area under the above Boroughs gets waterlogged <strong>and</strong> duration of inundation lasts for a<br />

long period due to inadequate capacity of the existing drainage system outfalling in SWF channel.<br />

To overcome the severe drainage problem, KEIP has taken up sewage <strong>and</strong> drainage project mainly<br />

for the added areas of Kolkata to address the drainage inadequacies of the area- specially falling<br />

under Borough VII, XI, <strong>and</strong> XII by construction of new pumping stations <strong>and</strong> also by augmentation of<br />

the existing pumping stations. This will result in additional discharge in SWF channel.The 3rd<br />

additional pump house at Chowbhaga <strong>and</strong> the new pumping station at Borough VII will increase the<br />

present drainage load of SWF channel at Chowbhaga point by 25.51 + 70% of 13.00 (since the<br />

discharge of the ail the pumping stations will not synchronize at the same time) = 34.61 m3/sec. The<br />

resulting afflux will surely affect the Full Drainage Level of the upstream channel, too. The Full<br />

Drainage Level (FDL) of crucial Topsia point 'A' will thus be increased from the already strained<br />

inconvenient level during tidal lockage. Due to increase in FDL, more areas will be waterlogged for<br />

longer duration.<br />

The design discharge of SWF channel before reaching additional pump house complex of<br />

Chowbhaga is 46.44 m3/sec. <strong>and</strong> the proposed pumped discharge from Borough VII is about 9.1<br />

m3/sec. The total discharge comes to about 46.44 + 9.1 = 55.54 m3/sec. The peak discharge<br />

capacity of SWF channel required before reaching the proposed 3rd additional pump house outfall at<br />

Chowbhaga is 55.54 + 8.45 + 11.34 + 11.34+ 25.51 m3/sec. = 112.18 m3/sec. (the capacity of the<br />

Old Pump House, if. Additional P.S., 2nd. Additional P.H <strong>and</strong> proposed 3rd.Additional P.M. are 8.45<br />

+ 11.34 + 11.34+ 25.51 m3/sec respectively). The objective of setting up the proposed dumping<br />

stations is to provide relief to its catchment area from water-logging upto the design year 2035. This


3.26<br />

will lead to significant improvement of environmental quality in the area <strong>and</strong> also the economic<br />

improvement of the community.<br />

The design discharge with the parameters given below works out to 86.65 m3/sec. in SWF channel in<br />

the reach of down stream of Chowbhaga. (Figures 2a & 3)<br />

Bed width - 26.20 m<br />

FSD - 3.83 m<br />

Hydraulic gradient - 0.00007<br />

Side slope - 1.5 H: IV<br />

Rugosity coefficient - 0.025<br />

Design discharge - 86.65 m 3 /sec.<br />

The additional discharge to be carried by SWF is 112.18 - 86.65 = 25.53 m 3 /sec., say 25.50 m 3 /sec.<br />

Bed width - 50.00 m<br />

FSD - 3.55 m<br />

Side slope - 1.5 H : 1 V<br />

Hydraulic slope - 0.00007<br />

Discharge (calculated) - 141.00 m 3 /sec<br />

It is found that the tide lockage period on river Haroagong - Kultigong has increased substantially <strong>and</strong><br />

average lockage period during peak monsoon when, the river rules high, will be 8.95 hours in 12.25<br />

hours of tide cycle. It means that the tide lockage will be about 18 hours in 24 hours.<br />

There are two existing sluices at the outfall of SWF <strong>and</strong> DWF channels through which the discharge<br />

is drained into Haraogong - Kultigong river. These two channels meet before outfall in the river. The<br />

discharge in DWF being small in comparison to that of, SWF, the discharge in DWF has been<br />

ignored in computation. During tide lockage for about 18 hours in 24 hours, discharge to the river is<br />

seriously hampered. This discharge can drain to the river for hardly 6 hours in 24 hours. With heavy<br />

discharge in the channel <strong>and</strong> drainage being stopped during tide lockage, the full drainage level<br />

upstream of the sluice starts rising causing water-logging in upper reaches.<br />

The lower part of SWF Channel consists of mainly rural <strong>and</strong> semi-rural area. Owing to pressure of<br />

population, rapid urbanization is going to change the nature of the area. Consequent upon the<br />

changing of rural <strong>and</strong> semi-rural into the semi-urban <strong>and</strong> urban area the drainage load in the channel<br />

will increase rapidly.<br />

Total drainage discharge at outfall has been increased by 10% beyond the projected year 2035 i.e.<br />

10% of 141 cumec to account for the urbanization = 14.10 m3/sec which will be going to add to the<br />

already overloaded SWF Channel.


3.27<br />

Some of the other drainage arteries of the City proper <strong>and</strong> the added areas viz. Beliaghata-Circular-<br />

New Cut Canals, Kestopur-Bhangarkata Khal <strong>and</strong> Tolly's Nullah, which are discussed below.<br />

Circular-Beliaghata Khal<br />

Circular canal was originally one of the principal navigational arteries, the pioneer in this process was<br />

Mr. Tiretta, the first planning <strong>and</strong> fixing up the alignment was prepared by him. The proposal was<br />

however turned down by Lord Wellesley. Another proposal was submitted by Major Scholch in 1824<br />

but he died in 1826 in Anglo-Burmese War. Excavation of the canal was started in 1829 <strong>and</strong><br />

according to his proposal was completed in 1833. Chitpore Lock was also set up during this year.<br />

The Circular Canal, originally conceived as a navigational channel has no gradient Originating at<br />

Chitpore, it bifurcates near Gaznavi Bridge ( near R. G. Kar Hospital ) <strong>and</strong> terminates at E.M. Bypass,<br />

the length of this canal being 8.50 Kms. The eastern <strong>and</strong> branch is known as New Cut Canal<br />

up to VIP Road Bridge. For some time past, the channel has been serving as a drainage channel.<br />

The Circular Canal is connected with the Hooghly at Chitpore through an outfall sluice <strong>and</strong> a<br />

navigational lock <strong>and</strong> with Eastern Drainage Channel near Eastern Metropolitan Bye-Pass.<br />

New-Cut - Kestopur-Bhangar Kata Khal<br />

Further increase in water traffic initiated excavation of New Cut Canal which was started in 1855-56<br />

<strong>and</strong> completed in 1856-59. It was also thus excavated as a navigation channel with no gradient. The<br />

canal system takes off from Circular Canal about 275 metres south of Belgachia (Gaznavi) Bridge.<br />

River Bidyadhari at that time had a minor tributary viz. Central Lake Channel, 91/2 miles (15.30<br />

Kms.) in length which used to outfall into the river at Bamanghata, originating in Dhapa Bill. The Lake<br />

Channel was however heavily silted up in 1897 thereby leaving the only means of waterway<br />

communication in total disarray between Bamanghata <strong>and</strong> Dhapa. To provide navigational<br />

facilities in these areas, excavation of Kestopur Khal started in 1908-10. It used to take off from<br />

Aaratoon Jute Mill <strong>and</strong> outfalling into Bhangar Kata Khal which was excavated during 1897-98. The<br />

Kestopur -Bhangarkata Khal system outfalls into river Kultigong through an outfall system. The<br />

lengths of this canal system is about 39 Kms. The canals are presently serving as a drainage<br />

channel catering the drainage discharge of Lake Town, Bangur, Dum Dum Park, Salt Lake, Rajarhat,<br />

Bhangar <strong>and</strong> some other rural areas Kestopur Khal forms the northern boundary of the Salt Lake<br />

City. The Eastern Drainage channel as stated earlier outfalls into Kestopur Khal. This canal system<br />

was provided with navigational facility <strong>and</strong> was known as a part of "Inner Sundarban Route" <strong>and</strong><br />

used as a waterway connecting erstwhile East Bengal, now Bangladesh. The navigation through the


3.28<br />

locks, one at Chitpur <strong>and</strong> another at Kulti has stopped since 1987. There is serious thinking on the<br />

revival of this navigational system.<br />

The southern parts of the metropolis are the added area under K.M.C. The drainage arteries are<br />

Tolly's Nullah. Tollygynge-Panchannagram ( TP ) Khal which cater drainage of Jadavpur area. The<br />

TP Khals in turn discharge into SWF channel through Chowbhaga Pumping Station, while the<br />

drainage in the fringe areas of the metropolis under South Suburban Municipality in Behala <strong>and</strong><br />

Garden Reach areas is catered through Monikhali <strong>and</strong> Churial Khals through outfall sluices outfalling<br />

into river Hooghly. The particulars of these drainage arteries are narrated in the following paragraphs.<br />

Tolly's Nullah<br />

This channel is basically a navigational channel having no regulatory arrangement either at intake or<br />

at outfall. Tolly's Nullah is named after Major William Tolly who worked as an Engineer under East<br />

India Company. He submitted a proposal to use the bed of the almost dead channel of Adiganga <strong>and</strong><br />

as a private venture excavated the channel under a temporary grant of l<strong>and</strong> <strong>and</strong> to levy canal tolls<br />

<strong>and</strong> completed in 1776. It was opened to navigation in 1777. The total stretch of 17 miles ( 27.5<br />

Kms.) of the channel was named after him <strong>and</strong> is better known as "Tolly's Nullah" <strong>and</strong> it used to<br />

outfall into river Bidyadhari near Sarnukpota or Tarda Port. The Govt took it over in 1804. The section<br />

was increased for the passage of larger ships, barges <strong>and</strong> boats. It had been highly prone to silting<br />

especially near <strong>and</strong> above Tollygunge where the tides of Bidyadhari <strong>and</strong> Tolly's Nullah used to meet<br />

<strong>and</strong> had to be constantly cleared to keep it navigable. It drains a substantial area of the southern part<br />

of the city including Keorapukur Basin, Regent Park, Bansdroni <strong>and</strong> other areas adjoining to cause<br />

bank in the course of its 15.50 Km stretch from Garia Railway Bridge to Hastings on river Hooghly.<br />

Boat Canal is an important tributary of Tolly's Nullah <strong>and</strong> it carries the sewage <strong>and</strong> storm flow of<br />

C.P.T. area <strong>and</strong> is the biggest source of pollution of Tolly's Nullah.<br />

Tollygunge-Panchannagram (TP) Khal<br />

The Tollygunge-Panchannagram (TP) Khal, stretching a total length of 6.75 Km. along with its<br />

intercepting channels of 5 Kms. <strong>and</strong> branch channels of 18 Kms. plays a formidable role to drain a<br />

portion of added area of KMC viz. Jadavpur, Santoshpur, Kasba, Tiljala,etc. It happened to be one of<br />

the lowest pockets, being almost a swampy area. Between the years 1934 <strong>and</strong> 1940, the area was<br />

virtually waterlogged <strong>and</strong> an acute situation of distress, particularly in the Kasba <strong>and</strong> Haltu areas,<br />

provided for a long time. Partial relief from the acute drainage congestion was however given in 1941<br />

by Tollygunge Municipality by allowing the storm water from this area to be discharged into the reexcavated<br />

<strong>Storm</strong> Water Flow (SWF ) channel at Chowbhaga through a sluice. The drainage situation


3.29<br />

was slightly improved but the ventage at the sluice was too inadequate. Subsequently a scheme was<br />

originally framed to drain a total area of 33.15 sq.km. (12.80 sq.mls.) of which 22.53 sq.km. area is<br />

urban <strong>and</strong> 10.62 sq.km. being rural. Drainage indices @ 75 mm per day for urban <strong>and</strong> 20 mm for<br />

rural area were adopted. The area is located on the east of the Budge Budge Rly. line <strong>and</strong> Tolly's<br />

Nullah, Salt Lake Basin on the west, on the south of SWF channel <strong>and</strong> on the north of Tolly's Nullah.<br />

The scheme was executed in 1972. It is one of the largest drainage arteries of the Kolkata<br />

Metropolitan area. Apart from domestic discharges, it carries industrial wastes, decaying materials<br />

<strong>and</strong> carcasses. Lots of unauthorised shanty dwellers residing on its banks also use it for their<br />

sanitary purposes <strong>and</strong> disposal of solid wastes. The area is very much prone to water logging having<br />

some low lying pockets.<br />

T.P. Basin Drainage Scheme was designed to drain the additional urban run-off by excavating<br />

another new lower level drainage channel named as "Intercepting Channel" connecting the Branch<br />

Channels BB1, CC1, DD1, EE1, segregating the urban area from rural area <strong>and</strong> the urban run-off<br />

would find its way through these channels to the Intercepting channel <strong>and</strong> the old TP Main Canal with<br />

its outfall pumping station would cater for the rural run-off <strong>and</strong> some of the urban run-offs through<br />

the other branch channels, viz. A1-A2, A3-A4, A5-A6 It was imperative to provide for pumping for<br />

disposal of the additional discharge from the basin <strong>and</strong> accordingly, the new pumping station,<br />

known as Chowbhaga New Pumping Station was constructed near the old one with 10 nos. of pumps<br />

of 50 cusecs each making a total of 500 cusecs ( 14.16 cumecs ).<br />

Originally, there were 9 nos. of Pumps of capacity 50 cusecs each at Chowbhaga being constructed<br />

during the year 1966-67. Afterwards, the basin condition changed, additional basin area was<br />

included, thereby increasing the area to 47.40 sq. km. (18.30 sq.mls.). A scheme for installation of<br />

additional pumps was drawn up to drain out the extra water due to urbanisation <strong>and</strong> inclusion of more<br />

rural areas. The capacity of new additional pump house was so designed that this pump house along<br />

with the existing ones may cater a limited discharge of 41 cumecs (1450 cusecs) to the SWF<br />

channel. As such, 1 5 nos. of pumps in total of capacity 50 cusecs each were installed.<br />

The drainage of the South-Suburban <strong>and</strong> the Garden Reach areas falling within Kolkata Municipal<br />

Corporation Ward nos. 115 to 132 <strong>and</strong> 133 to 141 areas is catered through Monikhali, Churial<br />

Keorapukur Khals, a brief outline of which is discussed in the following paragraphs.<br />

Monikhali Khal<br />

Monikhali Basin, with an area of 54.00 sq. km. consists of two main drainage arteries (1) New<br />

Monikhali Khal <strong>and</strong> (2) Old Monikhali Khal, the lengths being 6.931 Km. <strong>and</strong> 4.998 Kms.


3.30<br />

Respectively. The discharge of New Monikhali Khal is 44.16 cumecs (1559 cusecs) <strong>and</strong> that of Old<br />

Monikhali Khal is 3.82 cumecs (134.88 cusecs), The Khals ultimately outfall into river Hooghly<br />

through outfall sluices.<br />

The Khals fall within Maheshtala Municipality <strong>and</strong> are carriers of drainage water of this area including<br />

sewage compnsing domestic waste as well as discharge coming through Begore Khal carrying the<br />

discharge of Municipal Corporation.<br />

Both the chananels flow through densely populated area. As such the channels require to be lined<br />

particularly the side slopes require to be renovated by protective works to avoid slips. New Monikhali<br />

Khal requires immediate desiltation to accommodate the full supply of Begore Khal.<br />

Churial Khal<br />

Churial Khal system drains a total area of 164.98 sq.km. ( 63.70 sq.mls.) of which 141.65 sq.km.<br />

(54.69 sq.mls.) is rural <strong>and</strong> 23.33 sq.km. (9.01 sq.mls.) is urban. The main Khal, with a length of<br />

17.59 Kms. along Behala to Purba Barisha under Kolkata Municipal Corporation outfalls into river<br />

Hooghly through a 5-vented outfall sluice of 28.32 cumecs (1000 cusecs) capacity at Churial<br />

under Budge Budge Municipality. The diversion channel, with a length of 7.01 Kms. flowing from<br />

Mouza Mithapukur to Pujali Notified Area drains into river Hooghly through a 10-vented sluice of<br />

capacity 56.33 cumecs (1989 cusecs). Over <strong>and</strong> above, the system includes Churial Khal Extension<br />

of length 1.996 Kms. from Behala Motilal Gupta Road to Purba Barisha at Joka, 15 nos. branch<br />

canals of total length of 50.32 Km. <strong>and</strong> as many as 20 nos. of sub-branches. The system caters<br />

drainage of areas falling under P.S. Budge Budge, Bishnupur, Maheshtala <strong>and</strong> Thakurpukur. Desilting<br />

of the Khals is of urgent necessity to assure proper capacity of drainage channels <strong>and</strong> the<br />

Khals require to be lined.<br />

Keorapukur Khal<br />

The Keorapukur Khal, with a length of about 32 Kms. <strong>and</strong> a total basin area of 38,83 sq.km, has two<br />

directional outfalls, one into Diamond Harbour creek <strong>and</strong> the other into Tolly's Nullah near Kudghat.<br />

Out of its total length, 7.5 Km stretch lies within Kolkata Metropolitan area which drains water of a<br />

catchment area of about 30 sq. kms. at the northern end <strong>and</strong> outfalls-into Tolly's Nullah. This<br />

channel serves the drainage requirement of Bakeswar, Keorapukur, Putiary areas which are totally<br />

urbanised now. 10.9.2 The canal, being badly silted up <strong>and</strong> reduction of canal section is unable to<br />

drain out the discharge of the catchment area. The encroachment on the banks of the canal poses<br />

serious problem for execution of canal improvement works. The Keorapukur Drainagae Pumping


3.31<br />

Station, with a capacity of 4 x 50 = 200 cusecs was constructed in 1966-67 to drain out the water into<br />

Tolly's Nullah.<br />

3.16. Outfall sluices<br />

At the outfall at Kultigong, the cross section of the river is gradually decreasing, resulting in<br />

inadequate disposal capacity of the city’s drainage. Further, at the time of cyclonic storms, the<br />

ingress of the storm surge wave combined with tides casuse a lockage at the outfalls. In order to<br />

dispose the high volume of runoff (which is increasing with the rapid urbanisation of the Kolkata<br />

environs), higher capacity pumps are required. It is estimated that the tidal lockage period has<br />

steadily increased over the years <strong>and</strong> presently is about 18 hours in 24 hours. The different situations<br />

possible for the outfall <strong>and</strong> the aggravation of the tidal lockage are shown in the following figures.<br />

Figure 3-4. The downstream of the outfall (the Kultigong River) at low tide – outflowing sluice<br />

Figure 3-5. The downstream of the outfall (the Kultigong river) at high tide – sluice gates closed


3.32<br />

Figure 3-6. The downstream of the outfall (the Kultigong river) at high tide – sluice gates closed but<br />

water has accumulated in the drainage channel (tidal lockage)<br />

The following images depict some of the situations. For example, Figure 3-7 shows the outfall<br />

of the SWF (combined with DWF) channel at Ghushighata – showing the sluice vents at the<br />

bottom (below the closed shutters). The SWF is able to discharge to the river as the level of the<br />

Kultigong at this time is at a low level, unaffected by tide. Similar outfalls exist for the Kestopur<br />

canal as well as for the Bagjola canals. Of course, a high capacity pumping station has been<br />

installed at the Bagjola end to pump out the water at the time of tidal lockage.<br />

Figure 3-7. Kultigong at low tide – drainage channel discharging: a view from upstream


3.33<br />

Figure 3-8. Kultigong at low tide – drainage channel discharging: a view from downstream<br />

Figure 3-8 shows a view of the same sluice vents taken from the Kultigong river side. The<br />

water is exiting through the flap gates which are now open due to a low level of the river.<br />

Figure 3-9 shows the tail end of the SWF/DWF downstream end below the outfall meeting the<br />

river Kultigong.<br />

Figure 3-9. A view of the tail end of the drainage channel meeting Kultigong<br />

DRAINAGE CHANNEL TAIL END<br />

KULTIGONG AT LOW TIDE


3.34<br />

Figure 3-10 shows the tail end of the SWF/DWF channel that is at a high level due to a high<br />

tide of the river Kultigong. The river is connected to the bay of Bengal through the river<br />

Raimangal to which it connects about 50 kms downstream.<br />

Figure 3-10. Kultigong at high tide – sluice gates closed (below water): a view from downstream<br />

The River Research Institute, Govt. of West Bengal had in the past carried out sustained<br />

studies on the status of the Kultigang. These studies carried out till 1979, as shown in the Table<br />

3-3 below, did not show much variation. But in the recent past the channel has been subjected<br />

to larger discharge with more pollution. In the future also this channel will have to deal with still<br />

larger volumes of discharge <strong>and</strong> perhaps more pollution. So a stringent surveillance on the<br />

state of this channel is urgently called for.<br />

Table 3-3. Hydraulic Condition of river Kultigang: Annual average cross-sectional areas in sq.<br />

meter below 1.14 M. (3.75 feet) PWD at different points on the river Kultigong.<br />

Year Nowi/Sunthi Haroahat Ghusighata Malancha Bamnajore<br />

junction<br />

244 M D/S of<br />

Kulti outfall<br />

1952 33 305 685 2123 4323<br />

1953 34 304 719 2076 5025<br />

1954 31 302 690 1893 4835<br />

1955 30 311 718 1793 4872<br />

1956 29 343 743 1843 4968<br />

1957 27 336 721 1787 5013<br />

1958 24 330 749 1690 4886<br />

1959 24 301 665 1474 4692<br />

1960 23 321 671 1531 4758<br />

1961 30 335 648 1893 4171


3.35<br />

1962 22 321 725 2001 4919<br />

1963 26 378 762 2246 4576<br />

1964 26 352 783 2037 4281<br />

1965 26 340 875 1897 4325<br />

1966 19 371 929 2002 4621<br />

Data unavailable for 1967-1972<br />

1973 74 325 741 1463 4847<br />

1974 58 318 734 1346 4902<br />

1975 59 289 756 1344 4786<br />

1976 59 302 693 1247 4859<br />

1977 55 298 618 1358 4602<br />

1978 49 288 623 1159 4526<br />

1979 43 273 606 1230 4329<br />

1980 55 228 556 1368 4413<br />

1981 52 261 586 1305 4745<br />

1982 53 268 553 1304 4755<br />

1983 64 303 511 1271 4797<br />

1984 55 285 611 1812 5110<br />

1985 44 266 634 1713 4939<br />

Data unavailable for 1986-1978<br />

1979 68 251 574 1708<br />

1999 693 1493<br />

2000 65 255 696 1467<br />

As may be observed from the above table, the cross section near the outfall had a maximum area of<br />

929 sq. meter (1966, probably as a consequence of dredging the channel), compared to 696 sq.<br />

meter according to the latest available data of 2000. Similarly, the cross section at Malancha had<br />

once been as high as 2123 sq. meter (1952), which is recorded to be only 1467 sq. meter in 2000.<br />

On the other h<strong>and</strong>, the outflows from the drainage areas up to the outfall have increased over the<br />

years with the rapid urbanisation <strong>and</strong> associated paving of open l<strong>and</strong>s.<br />

The siltation of the Kultigong, unless remedied by dredging, may meet the same fate as that of the<br />

silted up Bidyadhari, which at one time had been conveying the storm discharge of Kolkata.<br />

Some of the cross sections of the drainage channels have been depicted in the following figures,<br />

along with their designed sections. It may be observed that most of the channels are heavily up <strong>and</strong><br />

require thorough cleanup. Some figures are also provided for the cross sections of the river Kultigong<br />

at specific locations.


3.36


3.37


3.38


Chapter Four<br />

Hazard Analysis: <strong>Cyclone</strong> <strong>and</strong> <strong>Storm</strong> <strong>Surge</strong><br />

4.1. <strong>Cyclone</strong> hazard in coastal zones<br />

Tropical cyclones are the deadliest of all natural disaster worldwide, accounting for about 64% of the<br />

total loss of lives. The 80-100 tropical cyclones that occur worldwide each year cause, on an<br />

average, death of 20,000 people <strong>and</strong> a total economic loss of $6-7 billion (Southern 1979). The<br />

Indian subcontinent is the worst affected part of the world as far as the death toll associated with<br />

tropical cyclone is concerned. Out of 9-recorded cases of heavy loss of human lives (40,000 or more)<br />

by cyclones during the past 300 years, 7 cases (77%) occurred in Indian subcontinent (Frank <strong>and</strong><br />

Hussain, 1971; Smith, 1989; Hebert et al., 1996). The tropical cyclones affect this region in two<br />

seasons: Pre-monsoon (April-May) <strong>and</strong> Post-monsoon (October-December). The peak frequency is<br />

found to be in the months of May <strong>and</strong> November.<br />

CHAPTER 4<br />

The Bay of Bengal is potentially energetic for the development of cyclonic storms <strong>and</strong> accounts for<br />

about 7% of the global annual total number of storms (Gray, 1968). These storms usually move<br />

towards the west, northwest <strong>and</strong> north. Some of them recurve towards northeast after initial<br />

northwestward movement. Though, considered to be much weaker in intensity <strong>and</strong> smaller in size as<br />

compared to the cyclones of other regions, the Bay of Bengal cyclones, in particular, the post<br />

monsoon cyclones that cross east coast of India or Bangladesh are highly devastating. This is mainly<br />

due to dense populated coastal region, shallow bathymetry; nearly funnel shape of the coastline <strong>and</strong><br />

the long stretch of the low-lying delta region embedded with large number of river systems. The<br />

casualty figures associated with major Bay of Bengal cyclones in the recent past are 3, 00,000 <strong>and</strong> 1,<br />

31,000 in Bangladesh in 1970 <strong>and</strong> 1991 respectively; 10,000 <strong>and</strong> 1000 in 1977 <strong>and</strong> 1990<br />

respectively in Andhra Pradesh (India) (Smith, 1989; Holl<strong>and</strong>, 1993; Gupta, 1999). The super cyclone<br />

that crossed Orissa (India) coast on 29th November 1999 affected 129.66 lakhs people (about<br />

10,000 people killed) <strong>and</strong> caused huge damage to properties (Kalsi, 2003). After independence, the<br />

most severe cyclone that crossed West Bengal coast was the cyclone of November 1988. Around<br />

28.3 lacs people in 3893 villages were affected by the cyclone, killing 532 people.


4.2<br />

In US, there is a steady decrease in the death toll caused by tropical cyclones with an average death<br />

toll of 7,000 during 1900-1910, 1,000 during 1950-1960 to only around 200 during 1990-1995<br />

(Southern, 1991). This is attributed to effective warning system, good response from the affected<br />

community <strong>and</strong> proper mitigation plan. In contrast, the property damage has been increased<br />

considerably due to increasing activity in the coastal region <strong>and</strong> increase in material <strong>and</strong> labor cost.<br />

However, in Southeast Asia <strong>and</strong> particularly in Indian region, there is no significant decrease in loss<br />

of life, which is being reflected by the death toll of about 1,31,000 in 1991 Bangladesh cyclone <strong>and</strong><br />

about 10,000 in 1999 Orissa super cyclone. At the same time, the damage to properties has been<br />

increased sharply in last few decades.<br />

In the present study, the past datasets about the occurrence to tropical cyclones over this region (the<br />

Bay of Bengal cyclones in the Indian region) is analyzed to determine the locations of high hazard<br />

incidence.<br />

4.2. Data Analysis<br />

As mentioned above, the vulnerability of the West Bengal coastal districts / blocks are assessed by<br />

analyzing the past cyclone datasets. For this purpose, the 114 years (1891-2004) past cyclone<br />

datasets obtained from India Meteorological Department (tropical cyclone Atlas <strong>and</strong> other scientific<br />

documents & journals) <strong>and</strong> Joint Typhoon Warning Centre (JTWC, USA), are used. The datasets<br />

used to find out the number / percentage of storms / severe storms (developed over the Bay of<br />

Bengal) crossed various countries bordering the Bay of Bengal <strong>and</strong> storms dissipated over the<br />

ocean. Further, the frequency of storms/ severe storms crossing various state boundary of India is<br />

calculated.<br />

Figure-1 shows the number <strong>and</strong> percentage of cyclones crossing Indian coast-line <strong>and</strong> coast-line of<br />

other countries viz., Bangladesh, Myanmar, Sri Lanka <strong>and</strong> those dissipated over the ocean itself.<br />

This clearly shows that most of the cyclones developed over the Bay of Bengal crosses Indian coast<br />

line (60.8%), the next highest being the number of cyclones dissipated over the sea. Thus in terms of<br />

frequency, among the countries bordering Bay of Bengal, India is most vulnerable. It is must be<br />

mentioned here that the vulnerability due tropical cyclones cannot be determined by solely by its<br />

frequency of occurrence, the vulnerability depends on associated storm surge, coastal inundation /<br />

flooding <strong>and</strong> socio-economy of the possible affected region.


4.3<br />

Figure 1: Number <strong>and</strong> percentage of tropical cyclone crossing coast-line of India, Bangladesh,<br />

Myanmar, SriLanka <strong>and</strong> the ones dissipated over Ocean.<br />

Figure 2: Number of tropical cyclone crossing coast-line of various states of India


4.4<br />

This shows that Orissa (with 103 cyclones in last 114 years) is most affected state with Andhra<br />

Pradesh (with 73 cyclones in last 114 years) is second most affected state closely followed by West<br />

Bengal (with 71 cyclones in last 114 years). This indicates the importance of vulnerability assessment<br />

of West Bengal due to tropical cyclones.<br />

4.3. District-wise distribution<br />

The above mentioned 114 year’s cyclone datasets are used to assess the vulnerability of the districts<br />

of West Bengal. The datasets shows that only nine districts of the states are affected by one or more<br />

cyclones during last 114 years. The figure-3 below shows the number of cyclones & severe cyclones<br />

affected the districts.<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

.<br />

Midnapore 24 24<br />

Pargana(N) Pargana(S)<br />

Haora Nadia Bankura Hugli Bardhaman Purulia<br />

Severe <strong>Cyclone</strong><br />

<strong>Cyclone</strong><br />

Figure 3: Number of tropical cyclone crossing various districts of India<br />

Only two coastal districts (South 24 Pargana <strong>and</strong> Midnapore or more specifically east Midnapore) are<br />

affected by severe cyclones that too only 3 severe cyclones crossing east Midnapore. So, in that<br />

sense only South 24 Pargana is found to be vulnerable to severe cyclones with 12 severe cyclones<br />

crossing the district. Similar is the case for cyclones as well with 32 & 38 cyclones crossing<br />

Midnapore <strong>and</strong> South 24 Parganas respectively. Other districts are affected by a few cyclones only.<br />

Table 1 gives the number / frequency of cyclones <strong>and</strong> their return period in years.


4.5<br />

Table 1: Frequency <strong>and</strong> return period of severe cyclones <strong>and</strong> cyclones on the<br />

districts of West Bengal.<br />

District Name<br />

Severe <strong>Cyclone</strong>s<br />

<strong>Cyclone</strong>s<br />

Number Return Number Return Period<br />

Period<br />

Midnapore 3 38 32 4<br />

North 24 Pargana 0 - 11 10<br />

South 24 Pargana 12 10 38 3<br />

Haora 0 - 5 23<br />

Nadia 0 - 3 38<br />

Bankura 0 - 9 13<br />

Hoogle 0 - 4 28<br />

Bardhaman 0 - 4 28<br />

Purulia 0 - 4 28<br />

The above table clearly shows that South 24 Pargana is the most vulnerable district with a severe<br />

cyclone in every ten years <strong>and</strong> a cyclone in very three years. It is followed by Midnapore with a<br />

cyclone in every four years <strong>and</strong> a severe cyclone in every 38 years. Rest of the districts is affected by<br />

few cyclones only with return period more than 20 years. It can also be mentioned here that the<br />

coastal area of South 24 Pargana is the low laying delta region <strong>and</strong> may results high storm surge <strong>and</strong><br />

coastal inundation leading to be higher vulnerability.<br />

4.4. Block-wise distribution<br />

West Bengal has two districts touching the Bay of Bengal; these are South 24 Pargana & East<br />

Midnapore. And as seen in the previous section, these two districts are most vulnerable <strong>and</strong> hence,<br />

need to be discussed further in details. Table-2 shows the coastal blocks with number of cyclones /<br />

severe cyclones causing l<strong>and</strong>fall. This shows that 12 among 15 severe cyclones <strong>and</strong> 38 among 56<br />

cyclones causes l<strong>and</strong>fall in South 24 Pargana. The return periods of the cyclones / severe cyclones<br />

are show in the Table-3. These two tables give an overview of l<strong>and</strong>fall of these storms on the West<br />

Bengal coastline. Total 71 cyclonic storms crossed West Bengal during last 114 years, among these<br />

26 crossed the coast-line at Gosaba. Figure 4 shows the coastal blocks of South 24 Pargana <strong>and</strong><br />

number of cyclones <strong>and</strong> severe cyclones crossing these blocks. This also clearly indicated Gosaba is<br />

the most affected block in this district.


4.6<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Severe <strong>Cyclone</strong><br />

<strong>Cyclone</strong><br />

5<br />

0<br />

Gosaba Kultali Patharpratima Namkhana Sagar Kakdwip<br />

Figure 4: Number of cyclone /severe cyclones affecting the coastal blocks of South 24 Pargana<br />

In similar manner, figure 5 shows the number of cyclones / severe cyclones affecting the coastal<br />

blocks of East Midnapore district. And in this case, the block Ramnagar-II is the most affected block.<br />

Also Ramnagar-II block is not as low lying as Gosaba, thus it can be noted that among the all coastal<br />

blocks, Gosaba is the most vulnerable. The most severe cyclonic storms that crossed east coast of<br />

India in recent years are 1988 & 1998 <strong>and</strong> both of these storms crossed the coast-line at Gosaba.<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Ramnagar-I Ramnagar-II Contai-I Contai-II Khejuri-II N<strong>and</strong>igram-I Sutahata-I Sutahata-II<br />

Severe <strong>Cyclone</strong><br />

<strong>Cyclone</strong><br />

Figure 5: Number of cyclone /severe cyclones affecting the coastal blocks of East Midnapore.<br />

The cyclone that crossed West Bengal coast over Gosaba at 1200 UTC of 29 November 1988 was<br />

the most intense storm in the history of West Bengal after independence. The storm intensified into<br />

severe cyclonic around 06 UTC 25 November. From 26 mornings onwards the storm moved a<br />

northerly direction <strong>and</strong> headed for West Bengal-Bangladesh coast. During its northerly course it<br />

further intensified into a core of hurricane winds on 27 mornings. It crosses West Bengal coast


4.7<br />

around 20 km west of Bangladesh border. After crossing the coast it maintained hurricane strength<br />

for about 6-7 hours <strong>and</strong> after that weakened rapidly. The system was one of the super storms that<br />

affected Indian coast. The lowest central pressure recorded was 942 hPa. The furry of the hurricane<br />

was felt over north & south 24 Parganas <strong>and</strong> some coastal districts of Bangladesh. Sagar Isl<strong>and</strong><br />

reported winds of 180 kts on 29 November.<br />

28.29 lacs of people in 3893 villages in 24 Parganas, Midnapore, Haora, Hoogly <strong>and</strong> Nadia districts<br />

of West Bengal was affected due to the storm. 532 people died <strong>and</strong> 57,600 cattle perished <strong>and</strong> crop<br />

& property worth of 137.77 Crores was damaged. In Bangladesh, the cyclone killed over 2000<br />

people.<br />

Table 2: <strong>Cyclone</strong>s <strong>and</strong> severe cyclones crossing coastal blocks in the South 24<br />

Pargana <strong>and</strong> East Midnapore<br />

Sl. No Blocks<br />

1. Gosaba Six (6); 1895,1909,1919,1970,<br />

1988, 1998<br />

2. Kultali One (1);<br />

1937<br />

Number of cyclonic storms<br />

Severe <strong>Cyclone</strong>s<br />

<strong>Cyclone</strong>s<br />

Nineteen (19);<br />

1896,1898,1902 ,1907, ,1927, 1929<br />

1932, 1933,1937, 1940 (2), 1942,<br />

1946, 1947, 1956, 1963, 1967, 198<br />

2000<br />

Six (6);<br />

1921, 1936, 1963, 1968, 1974, 200<br />

3. Patharpratima One (1); 1916 One (1); 1968<br />

4. Namkhana Two (2); 1981, 1971 Eleven (11); 1948, 1951, 1952, 195<br />

1960, 1962, 1964, 1968, 1971 (2),<br />

1981<br />

5. Sagar One (1); 1936 One (1); 1946<br />

6. Kakdwip One(1); 1901 None<br />

7. Ramnagar-I None Six (6); 1893, 1896, 1916, 1917, 19<br />

1961<br />

8. Ramnagar-II Two (2); 1942, 1971 Seven (7); 1893, 1896, 1898, 1904<br />

1925, 1956, 1976<br />

9. Contai-I None None<br />

10. Contai-II One (1); 1976 Three (2); 1953, 1975<br />

11. Khejuri-II None Two (2); 1941, 1943<br />

12. N<strong>and</strong>igram-I None One (1); 1927<br />

13. Sutahata None None<br />

Total Fifteen (15) Fifty Six (56)


4.8<br />

Table 3: Return periods of cyclones <strong>and</strong> severe cyclones crossing coastal<br />

blocks in the South 24 Pargana <strong>and</strong> East Midnapore<br />

Sl. Blocks<br />

Return period<br />

No.<br />

Severe <strong>Cyclone</strong>s<br />

<strong>Cyclone</strong>s<br />

1. Gosaba 19 years 6 years<br />

2. Kultali 114 years 19 years<br />

3. Patharpratima 114 years 114 years<br />

4. Namkhana 57 years 10 years<br />

5. Sagar 114 years 114 years<br />

6. Kakdwip 114 years -<br />

7. Ramnagar-I - 19 years<br />

8. Ramnagar-II 57 years 16 years<br />

9. Contai-I - -<br />

10. Contai-II 114 years 57 years<br />

11. Khejuri-II - 57 years<br />

12. N<strong>and</strong>igram-I - 114 years<br />

13. Sutahata - -<br />

Nine districts of West Bengal get affected by cyclones. But as far as vulnerability is concerned, South<br />

24 Pargana, East Midnapore, North 24 Pargana <strong>and</strong> Bankura have cyclone return period of less than<br />

20 years <strong>and</strong> may be considered as vulnerable. The block-wise (of all blocks) statistics of cyclones<br />

<strong>and</strong> severe cyclones from South 24 Pargana, East Midnapore <strong>and</strong> Haora are shown in tables 4, 5, 6<br />

respectively.<br />

The East Midnapore <strong>and</strong> South 24 Pargana are the two most vulnerable districts with cyclone return<br />

periods of four <strong>and</strong> three years respectively. In East Midnapore district, eleven blocks, viz.,<br />

Ramnagar-I, Ramnagar-II, Contai-I, Contai-II, Contai-III, N<strong>and</strong>igram-I, N<strong>and</strong>igram-II, Egra-I, Egra-II,<br />

Pataspur-I <strong>and</strong> Pataspur-II have cyclone return period of less than 20 years <strong>and</strong> may be considered<br />

as vulnerable. Seven blocks (Gosaba, Kultali, Namkhana, Patharpratima, Sagar, Diamond Harbour-I<br />

<strong>and</strong> Basanti) of South 24 Pargana are vulnerable as far as cyclone frequency is concern.<br />

Eleven blocks (Ramnagar-I, Ramnagar-II, Contai-I, Contai-II, Contai-III, N<strong>and</strong>igram-I, N<strong>and</strong>igram-II,<br />

Egra-I, Egra-II, Pataspur-I <strong>and</strong> Pataspur-II) can be termed as vulnerable to cyclonic storms.


4.9<br />

Table 4: The number <strong>and</strong> return period of cyclones <strong>and</strong> severe cyclones that affected the<br />

blocks of South 24 Pargana District<br />

Block Name<br />

Severe <strong>Cyclone</strong>s<br />

Number Return<br />

Period<br />

<strong>Cyclone</strong>s<br />

Number Return<br />

Period<br />

Gosaba 6 19 25 5<br />

Kultali 1 114 15 8<br />

Patharpratima 1 114 11 10<br />

Namkhana 2 57 14 8<br />

Sagar 1 114 12 10<br />

Kakdwip 1 114 4 28<br />

Kulpi 0 - 4 28<br />

Mathurapur-I 0 - 4 28<br />

Mathurapur-II 0 - 3 38<br />

M<strong>and</strong>irbazar 0 - 3 38<br />

Diamond Harbour-I 0 - 6 19<br />

Diamond Harbour-II 0 - 2 57<br />

Mograhat-I 0 - 3 38<br />

Mograhat-II 0 - 2 57<br />

Jaynagar-I 0 - 1 114<br />

Jaynagar-II 0 - 1 114<br />

Basanti 0 - 9 13<br />

Canning-I 0 - 4 28<br />

Canning-II 0 - 2 57<br />

Baruipur 0 - 5 23<br />

Bhangar-I 0 - 2 57<br />

Bhangar-II 0 - 5 23<br />

Sonarpur 0 - 5 23<br />

Falta 0 - 3 38<br />

Bishnupur-I 0 - 1 114<br />

Bishnupur-II 0 - 1 114<br />

Budge Budge-I 0 - 1 114<br />

Budge Budge-II 0 - 2 57


4.10<br />

Table 5: The number <strong>and</strong> return period of cyclones <strong>and</strong> severe cyclones that affected the<br />

blocks of East Midnapore District<br />

Block Name<br />

Severe <strong>Cyclone</strong>s<br />

<strong>Cyclone</strong>s<br />

Number Return Number Return Period<br />

Period<br />

Ramnagar-I 0 - 7 16<br />

Ramnagar-II 2 57 8 14<br />

Contai-I 0 - 6 19<br />

Contai-II 1 114 7 16<br />

Contai-III 0 - 8 14<br />

Khejuri-I 0 - 2 57<br />

Khejuri-II 0 - 4 28<br />

N<strong>and</strong>igram-I 0 - 6 19<br />

N<strong>and</strong>igram-II 0 - 6 19<br />

N<strong>and</strong>igram-III 0 - 4 28<br />

Sutahata-I 0 - 1 114<br />

Sutahata-II 0 - 3 38<br />

Mahisadal 0 - 3 38<br />

N<strong>and</strong>akumar 0 - 4 28<br />

Tamluk 0 - 3 38<br />

Sahid Matangini 0 0 -<br />

Egra-I 0 - 9 13<br />

Egra-II 0 - 11 10<br />

Pataspur-I 0 - 9 13<br />

Pataspur-II 0 - 11 10<br />

Bhagawanpur-I 0 - 3 38<br />

Bhagawanpur-II 0 - 5 23<br />

Mayna 0 - 1 114<br />

Panskura-I 0 - 1 114<br />

Panskura-II 0 - 2 57


4.11<br />

4.5. Assessment of <strong>Storm</strong> surge<br />

<strong>Storm</strong> surge is a phenomenon where the tide level rises mainly due to drifted seawater <strong>and</strong> a drop in<br />

atmospheric pressure when a low pressure system approaches. The hazard level of storm surge<br />

inundation is assessed by estimating the seawater inflow due to storm surges in the assessment<br />

area <strong>and</strong> the depth of inundation <strong>and</strong> other factors which are used as indices of damage.<br />

The east coast of India is frequently affected by storm surges. Most vulnerable portions of the east coast<br />

are Orissa, West Bengal <strong>and</strong> south Andhra coasts. To cite some of the destructive cyclones over the<br />

Bay of Bengal are 1977 Andhra <strong>Cyclone</strong>, 1999 Orissa Super cyclone, 1970 Bhola cyclone etc., where<br />

reported loss of lives are enormous. In recent past, the loss of life is considerably reduced compared to<br />

the earlier extreme events. The reason is improvement in the forecasting methods <strong>and</strong> timely evacuation<br />

of people from the vulnerable areas. There can be little doubt that the number of causalities would have<br />

been considerably lower if the surge could have been predicted, say, 24 hours in advance allowing<br />

effective warnings in the vulnerable areas. The prediction, must, of course, be accurate enough so that<br />

one can distinguish between the dangerous surges <strong>and</strong> the surges that cause little harm, as people<br />

can not be evacuated from the exposed areas for every approaching storm. To note, success have<br />

been achieved in predicting storm surges through operational numerical models.<br />

Operational numerical storm surge prediction models have been developed <strong>and</strong> are being routinely used<br />

for several coastal regions of the world such as: <strong>Storm</strong> Tide Warning Service (STWS) in the UK;<br />

operational systems in the Netherl<strong>and</strong>s <strong>and</strong> National Marine Environmental Forecasting centre in China.<br />

A review of these operational forecasting system models is given in Jiping et al.(1990), Jelesnianski<br />

(1989), Murty (1984) <strong>and</strong> Sundermann <strong>and</strong> Lenz (1983). The development of operational numerical<br />

storm surge prediction system in India is an active thrust area which needs immediate attention, where<br />

most of these models require large computational resources. Hence, for routine forecasting of storm<br />

surges providing multiple forecast scenarios, the models cannot be used in the absence of adequate<br />

computing facility. To overcome this difficulty, most of the forecasting offices including India<br />

Meteorological Department (IMD) use the nomogram method for prediction of storm surges<br />

associated with tropical cyclones. These nomograms are produced based on sensitivity analysis of<br />

modeling studies conducted for varied bathymetries <strong>and</strong> approach angles.<br />

The second WMO International workshop on tropical cyclones recommended the use of personal<br />

computers (PCs) by the developing countries in order to adopt the st<strong>and</strong>-alone storm-surge forecasting<br />

system. Recent advent of powerful personal computers has opened up the possibility of running<br />

dynamical models in real time on PC-based work stations in an operational office. In fact, a PC-based


4.12<br />

work station (the Automated Tropical <strong>Cyclone</strong> Forecasting System, ATCF) is already in operation<br />

at the Joint Typhoon Warning Centre, Guam for the past many years. The Australian Bureau of<br />

Meteorological Research Centre, together with their Bureau of Severe Weather Programme Office has<br />

also developed a work station based model for storm surge forecasting.<br />

Mechanics of the <strong>Storm</strong> <strong>Surge</strong><br />

In the Bay of Bengal area itself 142 moderate to severe storm surge events are on record from 1582 to<br />

1991. These surges, some in excess of eight meters (26 ft.), have killed hundreds of thous<strong>and</strong>s of<br />

people, primarily in Bangladesh (Murty <strong>and</strong> Flather, 1994). At least five processes can be involved in<br />

altering tide levels during storms. These include the pressure effect, the direct wind effect, the effect of<br />

the earth's rotation, the effect of waves, <strong>and</strong> the rainfall effect (Harris, 1963). The pressure effects of a<br />

tropical cyclone will cause the water level in the open ocean to rise in regions of low pressure <strong>and</strong> fall in<br />

regions of high pressure. Wind stresses causes a phenomenon referred to as "wind set-up”, which is the<br />

tendency for water levels to increase at the downwind shore, <strong>and</strong> to decrease at the upwind shore that is<br />

inversely proportional to depth. Wind set-up on an open coast will be driven into bays in the same way<br />

as the astronomical tide.<br />

<strong>Surge</strong> <strong>and</strong> wave heights on-shore are directly governed by the configuration <strong>and</strong> bathymetry of<br />

the sea-bottom. For narrow shelf (one that drops steeply from the shoreline <strong>and</strong> subsequently produces<br />

deep water in close proximity to shoreline) tends to produce a lower surge, but a surface wave of higher<br />

magnitude. The situation is continental shelf region along the eastern belt of India is gently sloping <strong>and</strong><br />

quite wide compared with the west coast which results in higher surges along east coast compared to<br />

the west coast. In deeper waters, a surge can be dispersed away from the cyclone. Upon entering a<br />

shallow gently sloping shelf, the surge cannot be dispersed away, but is generally driven onshore by the<br />

wind stress associated with the tropical cyclone. In the immediate vicinity of near-shore area, topography<br />

of l<strong>and</strong> surface is another important element in determining the storm surge extent. Areas where the l<strong>and</strong><br />

areas like less than a few meters above mean sea-level are at particular risk from storm surge<br />

inundation.<br />

4.6. Bottom Characteristics in Bay of Bengal<br />

The Bay of Bengal is the northward extended portion of the Indian Ocean. It is located between latitudes<br />

5°N - 22°N <strong>and</strong> 80°E - 100°E longitudes. Westward it is bounded by the East coast of Sri Lanka <strong>and</strong><br />

India, on north by the deltaic region of the Ganges-Brahmaputra-Meghna river system, <strong>and</strong> on the east<br />

by the Myanmar peninsula extended upto the Andaman-Nicobar ridges (Figure – 1). The southward<br />

boundary of the Bay is approximately along the line drawn from Dondra Head in south of Sri Lanka to


4.13<br />

the northern tip of Sumatra. The Bay occupies an area of about 2.2 million square kilometers with an<br />

average depth of 2,600 meters <strong>and</strong> maximum of 5,260 meters.<br />

Figure - 6: Bottom relief feature – Bay of Bengal<br />

4.6.1. Bottom Topography<br />

The bottom topography is characterized by broad funnel shaped basin with southward limit to the Indian<br />

Ocean. A thick uniform abyssal plain occupies almost the entire Bay of Bengal gently sloping southward<br />

at an angle of approximately 8°-10°. In many places underwater valleys dissect this plain continental<br />

mass. The width of the continental shelf varies considerably approximately less than 100 Kilometers.<br />

The “Swatch of No Ground” typically known as ‘Ganga Trough’ has a comparatively flat floor roughly 5 to<br />

7 kilometer wide <strong>and</strong> walls of about 12°inclination. This area has a seaward continuation for almost 2000<br />

kilometers down the Bay of Bengal in form of fan valleys. S<strong>and</strong>bars <strong>and</strong> ridges near the mouth of the<br />

Ganges-Brahmaputra delta pointing towards the ‘Swatch of No Ground” show sediments are tunneled


4.14<br />

through this trough into the deeper part of the Bay of Bengal. The shallower part of southern continental<br />

shelf off the coast of the Sunderbans, Patuakhali <strong>and</strong> Noakhali is covered by silt <strong>and</strong> clay, <strong>and</strong> extensive<br />

muddy tidal flats are developed along the shoreline. The ‘Sunda Trench’ runs parallel along the<br />

Westside of the Andaman-Nicobar isl<strong>and</strong>s which extends northward upto 10°N into the Bay <strong>and</strong> joins the<br />

eastern limit of the Himalayan range. The ‘Ninety East ridge’ runs in a north-south direction<br />

approximately along the 90°E longitude which lie immediately outboard the Sunda trench between the<br />

Bengal fan <strong>and</strong> the Nicobar fan.<br />

4.6.2. Hydrological <strong>and</strong> Oceanographic characteristics<br />

The hydrological conditions in the Bay of Bengal are determined by the monsoonal wind system <strong>and</strong><br />

also by hydrological characteristics of the open part of Indian Ocean. Discharge of fresh water from<br />

rivers largely influences the coastal northern part of the Bay. Physical oceanographic parameters<br />

pertaining to temperature, salinity <strong>and</strong> density of water in the southern part of the Bay of Bengal is similar<br />

to the open ocean. In the coastal region of the Bay <strong>and</strong> in north-eastern part of the Andaman Sea where<br />

significant influence of river water is present, the temperature <strong>and</strong> salinity are found different from the<br />

open part of the Bay.<br />

4.6.3.Temperature<br />

The mean annual temperature of the surface water is about 28°C. The maximum temperature is<br />

observed in May (approx. 30°C) <strong>and</strong> minimum of 25°C in January-February month. The variation in<br />

temperature is about 2°C in the southern end <strong>and</strong> about 5°C in the northward limits of the Bay of<br />

Bengal.<br />

4.6.4. Salinity<br />

In the open part of the Bay the salinity varies from 32‰ to 34.5‰, <strong>and</strong> in coastal region the variation is<br />

from 10‰ to 25‰. At the river mouths, the surface salinity decreases to 5‰ or even less. The coastal<br />

water is significantly diluted throughout the year, although the river water is greatly reduced during<br />

winter. Along the Ganges-Brahmaputra deltaic region there is decrease in salinity about 1‰ during<br />

summer which increases to 15‰ - 20‰ in winter. Salinity variations increase from the coast towards the<br />

open part of the Bay. On a vertical scale, the influence of fresh water discharge is experienced up to<br />

depths of 200 – 300 meters


4.15<br />

4.6.5. Tides<br />

The Head Bay region experiences semi-diurnal type of tides (two high <strong>and</strong> two low tides in a period of 24<br />

hours <strong>and</strong> 52 minutes). The highest tide is seen where the influence of bottom relief <strong>and</strong> configuration of<br />

the coast are prominent, in immediate vicinity of shallow water bays <strong>and</strong> estuarine confluence. The<br />

average height of tidal wave in the deltaic coast of the Ganges is about 4.92 meter. The tidal currents<br />

are strong which develop in the mouths of the rivers like the Hooghly <strong>and</strong> Meghna. The tidal information<br />

at six locations in the Hooghly River is depicted in Table -1.<br />

Table -6: Tide Table for the Hooghly River<br />

SAGAR GANGRA HALDIA<br />

DIAMOND<br />

HARBOUR MAYAPUR<br />

GARDEN<br />

REACH<br />

Highest High Water 6.66 7.25 7.26 7.35 7.1 7.7<br />

Mean H.W. Spring<br />

Freshlets 5.49 5.84 5.92 6.22 5.88 6.12<br />

Mean High water<br />

Springs Dry Season 5.06 5.43 5.51 5.74 5.28 5.24<br />

Mean High water<br />

Springs 5.22 5.6 5.7 5.94 5.54 5.62<br />

Mean High Water 4.64 4.93 5.01 5.24 4.83 4.88<br />

Mean High water<br />

Neaps Freshlets 3.98 4.31 4.43 4.62 4.29 4.45<br />

Mean High water<br />

Neaps Dry season 3.75 3.97 4.08 4.3 3.76 3.79<br />

Mean High water<br />

Neaps 3.86 4.12 4.26 4.42 3.98 4.1<br />

Local Mean water level 3 3.16 3.23 3.3 3 3.19<br />

Mean Low water<br />

Neap Freshlets 2.42 2.31 2.28 2.36 2.04 2.38<br />

Mean Low water Neaps<br />

Season 2.11 1.93 1.93 1.96 1.57 1.76<br />

Mean Low water<br />

Neaps 2.23 2.09 2.1 2.14 1.78 2


4.16<br />

Mean Low water 1.51 1.39 1.34 1.47 1.28 1.68<br />

Mean Low water<br />

Springs Freshlets 1.03 0.89 0.87 0.96 1 1.65<br />

Mean Low water<br />

Springs Dry Season 0.84 0.77 0.75 0.93 0.85 1.22<br />

Mean Low water<br />

Springs 0.92 0.83 0.8 0.94 0.91 1.41<br />

SITE OF TIDAL OBSERVATORIES:<br />

Station: SAGAR<br />

(LAT: 21 39'N, 88 03'E)<br />

Station: GANGRA<br />

(LAT: 21 57'N, 88 01'E)<br />

Station: HALDIA<br />

(LAT: 22 02'N, 88 06'E)<br />

Station: DIAMOND HARBOUR<br />

(LAT: 22 12'N, 88 10'E)<br />

Station: MAYAPUR<br />

(LAT: 22 26'N, 88 08'E)<br />

Station: GARDEN REACH<br />

(LAT: 22 33'N, 88 18'E)<br />

The tidal amplification is remarkably seen when approaching from the tidal observatory of Sagar to<br />

Garden Reach.<br />

4.6.6. Sea Level<br />

The influence of sea-water density <strong>and</strong> wind on sea-level shows a seasonal change in the Head Bay<br />

region. The range at Khidirpur is 166 cm, at Kolkata about 130 cm while at Chittagong is about 118 cm.<br />

In open waters of the eastern belt, the range is small compared to the northern <strong>and</strong> north-eastern coasts<br />

of the Bay.<br />

4.6.7. Surface <strong>and</strong> Sub-surface Current<br />

The surface circulation is found to be generally clockwise from January to July <strong>and</strong> counter-clockwise<br />

from August to December, which is analogous to the reversible monsoonal wind system. The flow is not


4.17<br />

constant, but depends on the strength <strong>and</strong> duration of the winds. The effects of strong wind blowing for a<br />

few consecutive days are reflected in the rate of flow. Currents to the north-east generally persist longer<br />

<strong>and</strong> flow at greater speed because of the stronger south-west monsoons. The vertical circulation in the<br />

Bay of Bengal is the upwelling/downwelling process which is almost seasonal in nature.<br />

4.7. Mathematical Formulation of <strong>Storm</strong> <strong>Surge</strong><br />

In the formulation of the model, the sphericity of the earth's surface is ignored. A system of rectangular<br />

Cartesian coordinates is used in which the origin, O, is in the equilibrium level of the sea surface. Ox<br />

points towards the east, Oy points towards the north <strong>and</strong> Oz is directed vertically upwards. The<br />

displaced position of the free surface is given by z =ζ (x,y,t) <strong>and</strong> the position of the sea floor by z = −<br />

h(x,y). Under these conditions, the basic hydrodynamic equations of continuity <strong>and</strong> momentum for the<br />

dynamical process in the sea may be given by<br />

∂u<br />

∂x<br />

∂v<br />

+<br />

∂y<br />

∂w<br />

+ = 0<br />

∂z<br />

(1)<br />

∂u<br />

∂u<br />

∂u<br />

∂ u<br />

+ u + v + w −<br />

∂t<br />

∂x<br />

∂y<br />

∂z<br />

fv =<br />

1 ∂p<br />

1 ∂τ<br />

x<br />

+<br />

ρ ∂x<br />

ρ ∂z<br />

(2)<br />

∂v<br />

∂t<br />

+<br />

u<br />

∂ v<br />

∂x<br />

+<br />

v<br />

∂v<br />

∂y<br />

+<br />

w<br />

∂v<br />

∂z<br />

+<br />

fu<br />

=<br />

−<br />

1 ∂p<br />

ρ ∂y<br />

+<br />

1 ∂τ<br />

ρ ∂z<br />

y<br />

(3)<br />

∂w<br />

+ u<br />

∂t<br />

∂w<br />

∂w<br />

∂w<br />

+ v + w<br />

∂x<br />

∂y<br />

∂z<br />

1 ∂p<br />

= −<br />

ρ ∂z<br />

− g<br />

(4)<br />

where,<br />

u,v,w : Renolds averaged component of velocity in the direction of<br />

x,y, <strong>and</strong> z respectively,<br />

t : time,<br />

p : pressure,<br />

ρ : density of seawater assumed homogenous <strong>and</strong> incompressible,<br />

f : Coriolis parameter, f = 2ωsinφ<br />

g : acceleration due to gravity,


4.18<br />

τx,τy : x <strong>and</strong> y components of the frictional stress.<br />

Molecular viscosity has been neglected in these equations. The terms τx <strong>and</strong> τy are included to model<br />

vertical turbulent diffusion. Denoting the wind stress <strong>and</strong> bottom stress components as (FS,GS) <strong>and</strong> (FB,<br />

GB) respectively <strong>and</strong> the surface pressure as pa, the boundary conditions become,<br />

u = v = w= 0<br />

at z = -h<br />

( y<br />

τ x , τ ) = ( F B , G B)<br />

at z = -h (5)<br />

( y<br />

τ x , τ ) = ( F s , G s)<br />

at z = ζ<br />

p = pa<br />

at z = ζ<br />

∂ζ<br />

∂ζ<br />

∂ζ<br />

+ u + v = w<br />

∂t<br />

∂x<br />

∂y<br />

at z = ζ (6)<br />

Here, the last condition is the kinematic surface condition <strong>and</strong> expresses the fact that the free surface is<br />

materially following the fluid. For long period waves, it is reasonable here to assume that wave length is<br />

large compared to the water depth. Using this assumption, it may be shown (Wel<strong>and</strong>er, 1961) that<br />

equation (4) reduces to the hydrostatic pressure approximation<br />

∂p<br />

=- ρg<br />

∂z<br />

(7)<br />

The principal equations (1), (2), (3) <strong>and</strong> (7) could be solved, but the procedure would be laborious<br />

because of the presence of the vertical coordinate. Unlike problems of the atmosphere, a boundary layer<br />

would need to be designed both at the top <strong>and</strong> bottom of the domain of integration. There is insufficient<br />

knowledge about the flow in such boundary layers.<br />

To get over this difficulty, a simplification is generally introduced by integrating the governing equations<br />

in the vertical. The unknown dependent variables are then (a) the water transport (or mean current) <strong>and</strong><br />

(b) the surface height. This procedure has commonly been adopted for storm surge computations


4.19<br />

because the water level is of primary importance. Integrating (1) to (3) in the vertical from z = − h to z = ζ<br />

<strong>and</strong> using conditions (5) to (7) one gets:<br />

∂ζ<br />

∂<br />

∂<br />

+ [( ζ + h)<br />

u] + [( ζ + h)<br />

v] = 0<br />

∂t<br />

∂x<br />

∂y<br />

(8)<br />

∂u<br />

∂u<br />

∂u<br />

1 ⎡ ∂<br />

2<br />

2<br />

∂<br />

⎤<br />

+ u + v − f v+<br />

⎢ ( ζ + h)(<br />

u -u<br />

) + ( ζ + h)(<br />

uv−uv)<br />

⎥<br />

∂t<br />

∂x<br />

∂y<br />

( ζ + h)<br />

⎣∂x<br />

∂y<br />

⎦<br />

∂ζ<br />

1 ∂pa<br />

1<br />

= −g<br />

− + [ Fs−FB]<br />

∂x<br />

ρ ∂x<br />

( ζ + h)<br />

ρ<br />

(9)<br />

∂v<br />

∂v<br />

∂v<br />

1 ⎡ ∂<br />

∂<br />

+ u + v + f u + ⎢ ( ζ + h)(<br />

uv−u v)<br />

+<br />

∂t<br />

∂x<br />

∂y<br />

( ζ + h)<br />

⎣ ∂x<br />

∂y<br />

∂ζ<br />

1 ∂pa<br />

1<br />

=- g − + [ Gs<br />

−GB]<br />

∂y<br />

ρ ∂y<br />

( ζ + h)<br />

ρ<br />

2 2<br />

⎤<br />

( ζ + h) ( v −v<br />

) ⎥<br />

⎦<br />

(10)<br />

where: over bars denote the depth averaged values, e. g.,<br />

1<br />

( u,<br />

v)<br />

=<br />

( ζ + h)<br />

ζ<br />

∫<br />

- h<br />

( u,<br />

v)d<br />

z,<br />

(11)<br />

ζ<br />

2<br />

(<br />

2 2<br />

1<br />

2<br />

u , v ) = ( u , v )d z,<br />

( ζ + h)<br />

∫<br />

- h<br />

(12)<br />

1<br />

( uv)<br />

=<br />

( ζ + h)<br />

ζ<br />

∫<br />

- h<br />

uv<br />

d z,<br />

(13)<br />

In most of the storm surge simulation models, the non-linear advective terms have been neglected<br />

mainly on the basis of scale analysis. This is justifiable when the characteristic amplitude of the surge is<br />

smaller than the characteristic depth of the basin. But in shallow water regions, particularly at the head of<br />

the Bay of Bengal, the non-linear terms are of special importance <strong>and</strong> must be retained in the


4.20<br />

formulation. However, the retention in (9) of terms such as<br />

( u<br />

2<br />

, u<br />

2<br />

)<br />

leads to a fundamental difficulty<br />

as they can not be evaluated within the framework of a vertically integrated model. In many well -<br />

documented applications of non-linear vertically integrated equations (8) to (10), it is usual to make<br />

assumptions typified by:<br />

2 2<br />

( u − u<br />

) = 0 ,<br />

2 2<br />

( v − v<br />

) =<br />

0 ,<br />

(14)<br />

( uv − uv ) =<br />

0<br />

u<br />

<strong>and</strong><br />

v<br />

This is equivalent to saying that the currents do not vary significantly in the vertical <strong>and</strong> the flow<br />

is dominated by the midstream flow. The validity of the assumption (14) has been demonstrated by<br />

Nihoul (1975) <strong>and</strong> Johns (1981). In the latter work it has been found that<br />

2 2<br />

(<br />

u / u )


4.21<br />

G<br />

B<br />

2 2<br />

= - 5 c f F S + c f ρv(<br />

u + v ) 2<br />

2<br />

1<br />

(17)<br />

It may appear surprising that the surface stress is also included in (17). This is because sea -bed friction<br />

is largely determined by the current profile above the sea-bed which, in turn, is dependent on the vertical<br />

gradient of the current near the surface.<br />

However, substituting the values from (14) <strong>and</strong> (16) into the equations (9) <strong>and</strong> (10), we get (the over bars<br />

have been dropped for convenience)<br />

∂u<br />

∂t<br />

∂u<br />

∂u<br />

∂ζ<br />

1 ∂p<br />

u + v −f<br />

v = −g<br />

−<br />

∂x<br />

∂y<br />

∂x<br />

ρ ∂x<br />

1 ⎡FS<br />

+ ⎢ −c<br />

( ζ + h)<br />

⎣ ρ<br />

1<br />

2 2<br />

⎤<br />

u(<br />

u + v ) ⎥<br />

⎦<br />

a<br />

+ f<br />

2<br />

(18)<br />

∂v<br />

∂t<br />

∂v<br />

∂v<br />

∂ζ<br />

1 ∂p<br />

u + v + f u = −g<br />

−<br />

∂x<br />

∂y<br />

∂y<br />

ρ ∂y<br />

1 ⎡GS<br />

+ ⎢ −c<br />

( ζ + h)<br />

⎣ ρ<br />

1<br />

2 2<br />

⎤<br />

v(<br />

u + v ) ⎥<br />

⎦<br />

a<br />

+ f<br />

2<br />

(19)<br />

For numerical treatment, it is convenient to express equations (18) <strong>and</strong> (19) in flux form as<br />

∂<br />

∂t<br />

∂<br />

∂<br />

[ ( ζ + h)<br />

u] + [( ζ + h)<br />

uu] + [( ζ + h)<br />

uv]<br />

− f ( ζ + h)<br />

v =<br />

∂x<br />

∂y<br />

∂ζ<br />

1 ∂ p<br />

1<br />

a F S<br />

2 2<br />

- g ( ζ + h)<br />

− ( ζ + h)<br />

+ − c f u ( u + v ) 2<br />

∂x<br />

ρ ∂x<br />

ρ<br />

(20)<br />

∂<br />

∂t<br />

∂<br />

∂<br />

[ ( ζ + h)<br />

v]+<br />

[( ζ + h)<br />

uv]+<br />

[( ζ + h)<br />

vv]+<br />

f ( ζ + h)<br />

u =<br />

∂x<br />

∂y<br />

∂ζ<br />

1 ∂ p<br />

1<br />

a GS<br />

2 2<br />

− g ( ζ + h)<br />

− ( ζ + h)<br />

+ − c v ( u + v ) 2<br />

f<br />

∂y<br />

ρ ∂y<br />

ρ<br />

(21)<br />

The equations (8), (20) <strong>and</strong> (21) can be written for the sake of simplicity as<br />

∂ζ ∂u~<br />

∂v~<br />

+ + = 0<br />

∂t<br />

∂x<br />

∂y<br />

(22)


4.22<br />

∂u<br />

~ ∂<br />

~<br />

~ ∂ ~ ~ ∂ζ<br />

1 ∂p<br />

u<br />

)+ ( ) =<br />

a Fs<br />

cf<br />

2 2<br />

+ ( uu vu −fv<br />

−g(<br />

ζ + h)<br />

− ( ζ + h)<br />

+ − ( u + v)<br />

∂t<br />

∂x<br />

∂y<br />

∂x<br />

ρ ∂x<br />

ρ ( ζ + h)<br />

1<br />

2<br />

(23)<br />

∂v<br />

~ ∂<br />

~<br />

~ ∂ ~ ~ ∂ζ<br />

1 ∂p<br />

v<br />

)+ ( )+ =<br />

a Gs<br />

cf<br />

2 2<br />

+ ( uv vv fu −g(<br />

ζ + h)<br />

− ( ζ + h)<br />

+ − ( u + v )<br />

∂t<br />

∂x<br />

∂y<br />

∂y<br />

ρ ∂y<br />

ρ ( ζ + h)<br />

1<br />

2<br />

(24)<br />

where<br />

u ~ = ( ζ + h)<br />

u <strong>and</strong> v~ = ( ζ + h)<br />

v<br />

are the new prognostic variables <strong>and</strong> (ζ+h) gives the total<br />

depth of the basin.<br />

The equation of continuity (22) along with the two momemtum equations (23) <strong>and</strong> (24) form the three<br />

basic equations of the numerical model. It consists of a set of three coupled equations for the unknowns<br />

u, v <strong>and</strong> ζ. The forcing terms in these three equations arise out of (i) Coriolis terms, (ii) the inverted<br />

barometric effect i.e.<br />

∂ p<br />

∂x<br />

a<br />

∂ p<br />

<strong>and</strong><br />

∂y<br />

a<br />

due to fall in atmospheric pressure, (iii) the component of wind<br />

stress ( FS, GS) <strong>and</strong> (iv) the bottom stress component. ( FB, GB).<br />

If these forcing terms could be specified by meteorological data <strong>and</strong> the geometry of the continental shelf<br />

then the problem would be solved by numerical integration. The response in the sea at any instant t > 0<br />

then determines the surge heights.<br />

Before proceeding to the numerical integration, it is necessary to have certain boundary <strong>and</strong> initial<br />

conditions.<br />

4.8. Boundary <strong>and</strong> Initial conditions<br />

In addition to the fulfillment of the surface <strong>and</strong> bottom conditions (5) <strong>and</strong> (6), appropriate conditions have<br />

to be satisfied along the lateral boundaries of the sea area under consideration for all time. Theoretically<br />

the only boundary condition needed in the vertically integrated system is that the normal transport vanish<br />

at the coast, i.e.,<br />

u cosα<br />

+ v sinα<br />

= 0<br />

for<br />

all<br />

t ≥ 0<br />

(25)<br />

where α denotes the inclination of the outward directed normal to the x-axis. It then follows that u = 0<br />

along the y-directed boundaries <strong>and</strong> v = 0 along the x-directed boundaries.


4.23<br />

At the open-sea boundary, the normal currents across the boundary may be prescribed, yielding a<br />

condition such as (25) modified by a non-zero term on the right h<strong>and</strong> side of the equation. Alternatively,<br />

a radiation type of condition may be applied, which leads to (Heaps, 1973)<br />

⎛ g<br />

u cosα<br />

+ v sinα<br />

+ ⎜<br />

⎝ h<br />

⎟<br />

⎠<br />

⎞<br />

1<br />

2<br />

ζ = 0<br />

(26)<br />

Application of a radiation type of condition (26) at the open sea boundary of a model allows the<br />

propagation of energy (disturbances) only outwards from the interior in the form of simple progressive<br />

waves. It also helps to eliminate the transient response more quickly as a result of the frictional<br />

dissipation in the system. Concerning its effectiveness Flather (1976a) notes that application of a<br />

radiation condition in the numerical model may remove the unrealistically large currents <strong>and</strong> grid scale<br />

oscillations in the vicinity of the open boundary which may possibly be produced by the application of<br />

conventional open-sea boundary condition (i.e., ζ= 0 at y=0).<br />

As usual it is assumed that the motion in the sea is generated from an initial state of rest, so that<br />

ζ = u= v= 0 everywhere for t = 0. (27)<br />

4.8.1. Determination of forcing functions<br />

The forcing terms in the prediction equations (22)-(24) are the Coriolis force, the surface pressure, wind<br />

stress components <strong>and</strong> the seabed friction. The surge is generated by an idealized cyclone, of constant<br />

strength, tracking across the analysis area with constant speed. In view of the strong associated winds<br />

<strong>and</strong> consequently high values of the wind stress forcing, the forcing due to barometric changes (i.e.)<br />

∂ p<br />

∂x<br />

a<br />

<strong>and</strong><br />

∂ p<br />

∂y<br />

a<br />

may be neglected in the surge prediction models. Further, the Coriolis force can be determined by<br />

knowing the latitudinal position of the area <strong>and</strong> the bottom stress may be parameterized in terms of<br />

depth averaged currents by a quadratic law. The problem thus remains to compute the surface winds<br />

<strong>and</strong> the wind stresses.<br />

So far no good theory exists on which a computation of the surface winds can be based. A number of<br />

numerical models use the model storms in which the wind speed is related to the pressure gradient. The<br />

pressure field is specified by:


4.24<br />

Δ p<br />

p(r) = p( ∞)<br />

−<br />

[1+ (r/R )<br />

2 1 / 2<br />

]<br />

(Isozaki, 1970) (28)<br />

Δ p<br />

p(r) =1010 −<br />

2<br />

[1+ (r/R ) ]<br />

(Das et al., 1974) (29)<br />

p(r) = p( ∞)<br />

−Δ p exp ( −r/R)<br />

(John <strong>and</strong> Ali, 1980) (30)<br />

where, p (r) <strong>and</strong> p (∞) represent sea level pressure at r <strong>and</strong> at the cyclone periphery, R is the radius of<br />

maximum winds <strong>and</strong> Δp is the pressure drop.<br />

The wind distribution in the cyclone is then calculated from the cyclostrophic wind or gradient wind<br />

formula. The cyclostrophic wind corresponding to the pressure field given by (29) is:<br />

V<br />

2<br />

= 4V<br />

2<br />

m<br />

2<br />

2 2<br />

[ μ ÷ (1+ μ ) ]<br />

where, μ = r/R <strong>and</strong> Vm is the maximum wind at R. The maximum wind (in knots) <strong>and</strong> the pressure drop<br />

(mb) may be related by:<br />

1<br />

V 2<br />

m = C ( Δ p)<br />

(32)<br />

where, “C” is a numerical constant.<br />

Johns <strong>and</strong> Ali (1980) use the following gradient wind formula for computing the wind distribution<br />

corresponding to the pressure field (30):<br />

(31)<br />

V = −<br />

fr<br />

2<br />

⎡f<br />

r<br />

+ ⎢<br />

⎣ 4<br />

1<br />

2 2<br />

2<br />

r ∂ p⎤<br />

+ ⎥<br />

ρ<br />

a<br />

∂ r ⎦<br />

where, ρa is the density of the air, taken as 1.293 kg m-3.<br />

(33)<br />

A number of other cyclone models compute the wind field by one of the following expressions:<br />

V = V<br />

m<br />

⎛<br />

⎜<br />

⎝<br />

r<br />

R<br />

3<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

, 0<br />

≤ r ≤ R<br />

, (Jelseninanski, 1965) (34)<br />

V = V<br />

m<br />

⎛ R ⎞<br />

⎜ ⎟<br />

⎝ r ⎠<br />

1<br />

2<br />

,<br />

r > R<br />

, (35)


4.25<br />

⎛ 2Rr<br />

⎞<br />

V = Vm<br />

⎜<br />

2 2<br />

⎟<br />

⎝ R + r ⎠<br />

(Jelesnianski, 1972) (36)<br />

With the surface winds estimated one can proceed to the computation of the stress at the sea surface.<br />

The surface stress is expressed by conventional quadratic law as:<br />

2<br />

F S ρ c u ( u + v<br />

2<br />

=<br />

a D a a a<br />

)<br />

1<br />

2<br />

1<br />

2<br />

= ) 2<br />

a D a a a<br />

2<br />

G S ρ c v ( u + v<br />

where, ua <strong>and</strong> va are the x <strong>and</strong> y components of surface wind, cD is the drag coefficient. Observational<br />

studies suggest that the drag coefficient may be related to the wind speed by:<br />

(37)<br />

cD = (1.00 + 0.07 v10 ) x 10-3 (38)<br />

in which v10 is the wind speed at 10m from the mean sea level. This expression is generally valid for<br />

wind speed less than 14 m sec-1. At wind speeds between 10 <strong>and</strong> 30 m sec-1 , cD varies from 2 x 10-<br />

3 to 3 x10-3 with no significant dependence on wind speed. Most of the workers use a uniform value of<br />

drag coefficient (Cd=2.8 x 10-3).<br />

4.9. Case Studies of <strong>Storm</strong> <strong>Surge</strong>s in coastal belt of West Bengal<br />

<strong>Storm</strong> surges associated with tropical cyclones having their l<strong>and</strong>fall in the coastal belt of West Bengal<br />

distributed in block-wise for the period 1891-2005, is depicted in Table-2. The block-wise frequency of<br />

these cyclones has been grouped based on their severity based upon the central pressure drop (∆P)<br />

while approaching the littoral belt of West Bengal state. As noticed from Table-2, the frequency of severe<br />

cyclones was highest in the Gosaba block with six severe extreme events in a total of 20 cases. Based<br />

on severe cyclones, the other blocks following Gosaba are Namkhana <strong>and</strong> Ramnagar which<br />

experienced two severe cyclones. Accordingly, four severe cyclones were selected viz; 1998 Gosaba<br />

cyclone, 1988 Gosaba cyclone, 1981 Namkhana cyclone <strong>and</strong> 202 Kultali cyclone. Among these four<br />

extreme events, the 1988 Gosaba cyclone was considered the most severe.<br />

Case -1: 1998 Gosaba <strong>Cyclone</strong><br />

The track <strong>and</strong> computed surge for the 1998 Gosaba cyclone is depicted in Figure-2(a). The simulation<br />

run was performed for 16 hours prior to the cyclone making its l<strong>and</strong>fall off Gosaba. The computed


4.26<br />

maximum surge for this event was 6.97 meter. Twelve (12) offshore locations were selected in the<br />

present study, four of which are in the vicinity of West Bengal <strong>and</strong> remaining in the Bangladesh. The<br />

radius of maximum winds (R) for this event is approximately 40 kilometer with a pressure drop (ΔP) of<br />

60 millibar. The computed surge along pre-defined location in the coastal West Bengal show a maximum<br />

surge of 4.11 m off Patharprathima. In the immediate vicinity far east off Sunderbans, the computed<br />

surge is 3.31 meters along New Moore Isl<strong>and</strong>s. Left of this track along Bakhali the computed surge is<br />

3.81 m. The computed U <strong>and</strong> V components of velocity pertaining to surface currents are shown in<br />

Figures-2b,c. It could be noticed a strong north-west component of current existed during this event.<br />

Case -2: 1988 Gosaba <strong>Cyclone</strong><br />

Figure-3(a) show the track <strong>and</strong> computed surge for the 1988 Gosaba cyclone. The simulation for this<br />

event was performed for 13 hours before the cyclone made its l<strong>and</strong>fall off Gosaba. The computed<br />

maximum surge for this event was 11.26 meter. In this study, twelve (12) offshore locations were<br />

selected, four of which are in the coastal belt of West Bengal <strong>and</strong> the rest in Bangladesh. The radius of<br />

maximum winds (R) is approximately 50 kilometer with a maximum pressure drop (∆P) of 71 millibar.<br />

This event was considered the most severe in the past 113 years making l<strong>and</strong>fall in this block. In the<br />

vicinity far east Sunderbans (Moore Is., Station-4) the computed surge is 2.18 meter, whereas<br />

immediate vicinity right of this track maximum computed surge was 4.78 meter off Bakhali. The<br />

computed surge off Patharprathima was approximately 3.72 meter. The computed U <strong>and</strong> V components<br />

of the surface currents are shown in Figures-3b,c. The surface currents exhibit strong easterly<br />

component in the coastal belts of West Bengal having spatial variability of approximately 300 kilometers,<br />

whereas east of Sunderbans the currents noticed were in the north-westerly direction.<br />

Case -3: 1981 Namkhana <strong>Cyclone</strong><br />

The computed surge <strong>and</strong> track for the 1982 Namkhana cyclone is shown in Figure-4(a). The simulation<br />

run for this event was performed for 21 hours. The radius of maximum winds was 60 Kilometer <strong>and</strong><br />

∆P=37 millibar. The computed maximum surge for this event was 4.47 meter. Figures-4b,c show the U<br />

<strong>and</strong> V components associated with this event where the resultant currents are dominant easterly.<br />

Case -4: 2002 Kulthali <strong>Cyclone</strong><br />

Figure-5(a) show the computed surge <strong>and</strong> track associated with this cyclone. The maximum surge for<br />

this event is 3.5 meter. The radius of maximum winds <strong>and</strong> maximum pressure drop are 25 kilometer <strong>and</strong><br />

29 millibar respectively. The simulation run for this event before its l<strong>and</strong>fall was made for 11 hours. From


4.27<br />

Figures-5b,c which show the U <strong>and</strong> V components of the computed surface velocities, strong northeasterly<br />

currents are seen prevailing during this event.<br />

The frequency of cyclones in coastal blocks of West Bengal is shown in Figure-6 <strong>and</strong> the vulnerability of<br />

four pre-defined locations viz; East Bakhali, Bakhali, Patharpratima <strong>and</strong> Moore Is. are depicted in Figure-<br />

7. Though the frequency as seen from Figure-6 is higher in the Gosaba block, the vulnerability risk is<br />

higher in Bakhali compared with other three locations.<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############## ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ################ ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############## #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ #### # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

# # ############### # ############ ### # # # # # # ############### # ############ ### # # # # # # ############### # ############ #### # # # # # # ############# # ############ #### # # # # # # ############# # #####<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#Y #Y #Y #Y #Y #Y #Y #Y #Y #Y #Y#Y<br />

INDIA<br />

BANGLADESH<br />

MYANMAR<br />

<strong>Cyclone</strong> Track<br />

1 2<br />

3 4 5 6 7 8 9 10 11 12<br />

Station-1: 0.30 m<br />

Station-2: 3.81 m<br />

Station-3: 4.11 m<br />

Station-4: 3.31 m<br />

Station-5: 2.44 m<br />

Station-6: 1.46 m<br />

Station-7: 1.16 m<br />

Station-8: 0.73 m<br />

Station-9: 0.40 m<br />

Station-10: 0.08 m<br />

Station-11: 0.0 m<br />

Station-12: 0.0 m<br />

<strong>Storm</strong> surge computed at pre-defined locations along<br />

Stations: 1-12 in coastal belt of West Bengal<br />

Figure 7: Track <strong>and</strong> computed surge for 1988 Gosaba cyclone


4.28<br />

U-Component of Velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

MYANMAR<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-uc1.txt<br />

# -2.325 - -0.831<br />

# -0.831 - -0.432<br />

# -0.432 - -0.257<br />

# -0.257 - -0.161<br />

# -0.161 - -0.062<br />

# -0.062 - 0.124<br />

# 0.124 - 0.378<br />

# 0.378 - 0.623<br />

# 0.623 - 1.127<br />

# 1.127 - 2.707<br />

Figure - 8: U-component of velocity for 1988 Gosaba cyclone


4.29<br />

V-Component of Velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

MYANMAR<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-vc1.txt<br />

# -1.58 - 0.054<br />

# 0.054 - 0.187<br />

# 0.187 - 0.318<br />

# 0.318 - 0.439<br />

# 0.439 - 0.543<br />

# 0.543 - 0.702<br />

# 0.702 - 0.935<br />

# 0.935 - 1.334<br />

# 1.334 - 2.028<br />

# 2.028 - 3.186<br />

Figure - 9: V-component of velocity for 1988 Gosaba cyclone


4.30<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ### ######## ## ## ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ###### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## # ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ### ### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ### ### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## # ##### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## # ##### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## # ##### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### # ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## ####### # ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### # ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## # ### ### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### # #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## # ####### ## # ####### ## ######## ## ### #### ## ## ######## ## ####### ### ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ######## ## ## ### ## ## ####### ## # ####### ## # # ##### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ## ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ######## ### ## ##### ## ## ######## ## ## ### ## ## ####### ## ### ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### ## ## ####### ## ## ####### # ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### # ###### ### ## ##### ## ## ####### ## ## #### ## ## ####### ## # ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### # ## #### ## ## ####### # # ####### ## ######## ## ### ##### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### # ## ####### # ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## # ### ## ## ## #### ## ## # # #### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## #### ## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ## ## ## # #### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## #### ## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### # ## ####### ## ## ####### ## ######## ## ### #### ## ## ######### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### # ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## # ###### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ####### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ###### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ######## ### ## ##### ## ## ######## # ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## # ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ###### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ##### ## ## ## #### ## ## # # #### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## # ## ######## ## ## ##### ## ## ####### ## ## ####### ## #### ### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ###### ## ## ####### ## ## ###### ## ######## ## ### #### ## ## ##### ## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### ### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## # ## ### ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ## #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ####### ### ## #### ##### ######## ### ## #### ## ## ####### ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## # ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## # ## ##### ######## ### ## ##### ## ## ##### ## ## ## ##### # ## ###### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ######## # ## ##### ## ## ####### # ## ####### ## ######## ## ### ##### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## ### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ####### ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### # ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ###### ## # ####### ## ## ####### ## ######## ## ### #### ## ## ##### ## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### # ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### ## ## ######## ## ## #### # ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ##### ## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## #### ### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ###### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ##### ## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ### ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### # ###### ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## # ## ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ### ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ##### ## # ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### #### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ### ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## # ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### # #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### # ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### ### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ### ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## # ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ####### #### ## #### ##### ##### ## ### ## ##### # ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ###### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### # ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## # ###### ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

%[ %[ %[ %[ %[ %[<br />

%[ %[<br />

%[<br />

%[ %[ %[<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ### ######## ## ## ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ###### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## # ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ### ### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ### ### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## # ##### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## # ##### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## # ##### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### # ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## ####### # ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### # ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## # ### ### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### # #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## # ####### ## # ####### ## ######## ## ### #### ## ## ######## ## ####### ### ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ######## ## ## ### ## ## ####### ## # ####### ## # # ##### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ## ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ######## ### ## ##### ## ## ######## ## ## ### ## ## ####### ## ### ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### ## ## ####### ## ## ####### # ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### # ###### ### ## ##### ## ## ####### ## ## #### ## ## ####### ## # ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### # ## #### ## ## ####### # # ####### ## ######## ## ### ##### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## # ## #### # ## ####### # ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## # ### ## ## ## #### ## ## # # #### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## #### ## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ## ## ## # #### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## #### ## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### # ## ####### ## ## ####### ## ######## ## ### #### ## ## ######### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### # ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## # ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## # ###### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ####### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ###### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ######## ### ## ##### ## ## ######## # ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## # ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ###### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ##### ## ## ## #### ## ## # # #### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## # ## ######## ## ## ##### ## ## ####### ## ## ####### ## #### ### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ###### ## ## ####### ## ## ###### ## ######## ## ### #### ## ## ##### ## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### ### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## # ## ### ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ## #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ####### ### ## #### ##### ######## ### ## #### ## ## ####### ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## # ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## # ##### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## # ## ##### ######## ### ## ##### ## ## ##### ## ## ## ##### # ## ###### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ## ## ## ## ######## # ## ##### ## ## ####### # ## ####### ## ######## ## ### ##### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### # ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## ### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ####### ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### # ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### # ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ###### ## # ####### ## ## ####### ## ######## ## ### #### ## ## ##### ## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### # ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ## ## ##### ## ## ######## ## ## #### # ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ##### ## ## ## #### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ###### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## #### ### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ###### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### # ## ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ##### ## ### ## ##### ## ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ## # #### ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # ### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ### ##### ## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### # ###### ### ## ##### ## ## ####### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ### ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## # ## ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ### ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ##### ## # ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## # ###### ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ## ####### ## ######### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## # ###### ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### #### ######## ### ## ##### ## ## # ###### ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ### ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## # ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## #### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ########### ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## # ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ######## ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## # #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### # #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### # #### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### # ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### ### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ### ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ## ## ## ## ######### ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######### ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## # ## ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ### ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## # ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## ### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ####<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ### ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ######## ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ### ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ####### ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ## ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ### ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ### ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ####### #### ## #### ##### ##### ## ### ## ##### # ## ######## ## ## ##### ## ## ######## ## ## ####### ## ######## ## ### #### ## ## ######## ## ###### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### # ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### # ## ######## ## ### ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ######## ### ## #### ##### ####### ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ### ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ##<br />

## ## ## #### ### ## ######## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />

## ## ## #### ### ## ##### ## ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ### ####### ## ## ####### ## ######## ## ### #### ## ## ######## ## # ##### ## ## ###<br />

## ## ## #### ### ## # ###### ### ## #### ##### ######## ### ## ##### ## ## ######## ## ## ##### ## ## ####### ## ## ####### ### ######## ## ### #### ## ## ######## ## ####### ## ## ###<br />


4.31<br />

U-component of Velocity (Surface currents)<br />

BANGLADESH<br />

INDIA<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-uc1.txt<br />

# -1.727 - -1.002<br />

# -1.002 - -0.657<br />

# -0.657 - -0.467<br />

# -0.467 - -0.313<br />

# -0.313 - -0.2<br />

# -0.2 - -0.075<br />

# -0.075 - 0.215<br />

# 0.215 - 0.622<br />

# 0.622 - 1<br />

# 1 - 1.857<br />

Figure - 11: U-component of velocity for 1998 Gosaba cyclone


4.32<br />

V-component of Velocity (Surface currents)<br />

BANGLADESH<br />

INDIA<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-vc1.txt<br />

# -2.082 - 0.047<br />

# 0.047 - 0.188<br />

# 0.188 - 0.311<br />

# 0.311 - 0.452<br />

# 0.452 - 0.627<br />

# 0.627 - 0.837<br />

# 0.837 - 1.114<br />

# 1.114 - 1.452<br />

# 1.452 - 1.979<br />

# 1.979 - 2.837<br />

Figure - 12: V-component of velocity for 1998 Gosaba cyclone


4.33<br />

##########################################################################################################################################################################################################################################################################################<br />

############################################################################################################################################################################################# ############################################################################################<br />

##########################################################################################################################################################################################################################################################################################<br />

############################################################################################################################################################################################# ############################################################################################<br />

############################################################################################################################################################################################ ############################################################################################<br />

############################################################################################################################################################################################ ############################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################## ###########################################################################################<br />

############################################################################################################################################################################################ ###########################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

##########################################################################################################################################################################################################################################################################################<br />

##########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################### ##########################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################### #############################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

##################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

##########################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

#################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

##########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

##################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

##################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#########################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

########################################################################################################################################################################################################################################################################################<br />

#######################################################################################################################################################################################################################################################################################<br />

######################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

##################################################################################################################################################################################################################################################################################<br />

###################################################################################################################################################################################################################################################################################<br />

####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#####################################################################################################################################################################################################################################################################################<br />

#################################################################################################################################################################################################################################################################################<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

INDIA<br />

MYANMAR<br />

BANGLADESH<br />

Figure - 13: Track <strong>and</strong> computed surge for November 2002 Kultali<br />

<strong>Cyclone</strong>


4.34<br />

U-component of Velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-uc1.txt<br />

# -0.835 - -0.406<br />

# -0.406 - -0.122<br />

# -0.122 - -0.053<br />

# -0.053 - -0.015<br />

# -0.015 - 0.032<br />

# 0.032 - 0.106<br />

# 0.106 - 0.192<br />

# 0.192 - 0.283<br />

# 0.283 - 0.413<br />

# 0.413 - 0.765<br />

Figure - 14: U-component of velocity for 2002 Kultali cyclone


4.35<br />

V-component of Velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-vc1.txt<br />

# -0.494 - -0.337<br />

# -0.337 - -0.198<br />

# -0.198 - -0.064<br />

# -0.064 - 0.033<br />

# 0.033 - 0.092<br />

# 0.092 - 0.14<br />

# 0.14 - 0.194<br />

# 0.194 - 0.324<br />

# 0.324 - 0.528<br />

# 0.528 - 0.901<br />

Figure - 15: V-component of velocity for 2002 Kultali cyclone


## #######################################################################################################################################################################################################################################################################################################################################################################################################################################<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

#<br />

4.36<br />

INDIA<br />

BANGLADESH<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ### ######### ### ### ### ##################### ##########################<br />

#####<br />

#####<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#####################<br />

### ### ### ### ###<br />

###<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ### ######### ### ### ### ######### ### ###################################<br />

#####<br />

#####<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###############################################<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ### ######### ### ### ###<br />

#########<br />

#########<br />

###<br />

###<br />

############<br />

### ### ######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

#####<br />

#####<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

######################################<br />

######################################<br />

#####<br />

#####<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###############<br />

######### ### ###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ### ######### ### ### ### ### ############### ###### ###### ### ### ###########<br />

#####<br />

#####<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

######<br />

#########<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###############################################<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ###### ###### ### ### ###<br />

###############################################<br />

###############################################<br />

######################################################################################<br />

##### ### ### ### ######### ### ### ############ ### ### ############ ### ### ###### ###### ### ### ######<br />

#########<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

########################<br />

########################<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

###################################<br />

###############################################################################################<br />

###### ### ### ############ ### ### ###### ###### ### ### ###### ###### ###<br />

###<br />

###<br />

###<br />

###########################<br />

########################### ######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

######################################### ### ### ############ ### ### ###### ###### ### ### ############ ### ### ##################################################<br />

######################################################################################<br />

######################################### ### ### ############ ### ### ###### ###### ### ### ##############################<br />

######### ### ### ### ######### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

##########################<br />

##########################<br />

#########################################<br />

#########################################<br />

###<br />

###<br />

###<br />

###<br />

###########################<br />

############ ### ### ### ######<br />

###<br />

###<br />

###<br />

#########<br />

### ### #########<br />

#########<br />

###<br />

#########<br />

###### #########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

##########################<br />

##########################<br />

######################################### ### ### ############################## ### ### ### ######### ###### ### ######### ############### ###### ### ### ###########<br />

######################################### ### ### ############################## ### ### ################## ### ######### ############### ###### ### ### ###########<br />

#######################################################################<br />

################################################################# ### #########<br />

######<br />

###<br />

###<br />

###<br />

##################<br />

##################<br />

###<br />

###<br />

###<br />

########################<br />

###############################################<br />

###### ### ### ###########<br />

###########################################################<br />

#################################################################################################################<br />

########################### ############ ### ### ###############################################<br />

### ### ### ###### ###### ### ### ###########<br />

#############################<br />

####################################################################<br />

############ ### ### #######################################<br />

### ###### ### ###############<br />

######### ###<br />

###<br />

###<br />

###<br />

###<br />

### #########<br />

######### ###<br />

###<br />

###<br />

###<br />

###<br />

### #############################<br />

#############################<br />

######################################### ### ### ############ ######### ###### ### ######### ######### ### ### ### ######### ### ### ### #############################<br />

############################################<br />

######################################### ########################<br />

#################################<br />

### ###### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

################################<br />

################################<br />

####################### ### ############### ### ### ############### ### ### ###### ### ### ### ### ######### ### ### ### ######### ### ### ### ### ######### ### ### ###########<br />

#################<br />

##########################<br />

###########################<br />

### ############ ### ###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

### ###<br />

################################<br />

### ######### ### ### ###########<br />

##########################<br />

########### ##############################<br />

### ############ ###<br />

###<br />

###<br />

###<br />

##############################<br />

##############################<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

### ###<br />

### ###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

################################<br />

### ### ######### ### ### ###########<br />

##### ### ### ############################## ### ### ############################## ### ### ### ######### ### ### ### ######### ### ### ### ### ######### ### ### ###########<br />

#################<br />

######## ### ###################################################<br />

######################## ### ### ##############################<br />

### ### ######### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

### #########<br />

#########<br />

###<br />

###<br />

###################################<br />

###################################<br />

#####<br />

#######################<br />

#########################################################<br />

### ### ############ ### ### ############ ###<br />

###<br />

###<br />

###<br />

### #########<br />

### ###### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

### #########<br />

#########<br />

###<br />

### ###################################<br />

###################################<br />

######################################### ### ### #################################### ### ######### ### ### ### ######### ### ### ### ### ######### ### ##############<br />

##########################<br />

########### ### ### ###### ###<br />

###<br />

###<br />

##############################<br />

################################################<br />

### ### ### ###### ### ###<br />

### ###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

##################<br />

### ######### ### ###<br />

###########<br />

###########<br />

########################## ### #################################### ### ###### ### ### ### ### ######### ### ### ### ######### ### ### ### ### ############### ###########<br />

########<br />

###########<br />

##################<br />

### ############<br />

###<br />

###<br />

############<br />

############<br />

###<br />

###<br />

###<br />

###<br />

############<br />

############<br />

##################<br />

### ############ ### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

##################<br />

###### ############<br />

###########<br />

###########<br />

###########<br />

##### ### #######################################################################################<br />

### ############ ### ############ ### ### ############ ################## ### ### ### ######### ###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

###### ######<br />

### ###<br />

###########<br />

###########<br />

######## ### ### ######################################################### ###### ### ### ### ######### ### ### ### ######### ### ### ### ###### ###### ###### ###########<br />

##### ### ### ### ############ ### ###### ###### ### ############### ### ### ##################### ######### ### ### ### ######### ### ### ### ###### ###### ### ### ###########<br />

#####<br />

#####<br />

###<br />

#####################<br />

### ### #################################<br />

### ############ ### ###############<br />

####################################<br />

### ### ###### ###### ### ###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

#########<br />

#########<br />

###<br />

###<br />

###<br />

###<br />

###<br />

###<br />

######<br />

######<br />

######<br />

######<br />

###<br />

###<br />

###<br />

###<br />

###########<br />

###########<br />

############################################### ############ ### ### ################## ### ######### ### ### ### ######### ### ### ### ###### ###### ### ### ###########<br />

MYANMAR<br />

<strong>Cyclone</strong> Track<br />

Figure - 16: Track <strong>and</strong> computed surge for 1981 Namkhana <strong>Cyclone</strong>


4.37<br />

U-Component of Velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-uc1.txt<br />

# -0.349 - -0.21<br />

# -0.21 - -0.141<br />

# -0.141 - -0.116<br />

# -0.116 - -0.09<br />

# -0.09 - -0.065<br />

# -0.065 - -0.04<br />

# -0.04 - -0.012<br />

# -0.012 - 0.026<br />

# 0.026 - 0.105<br />

# 0.105 - 0.31<br />

Figure - 17: U-component of velocity for 1981 Namkhana cyclone


4.38<br />

V-Component of velocity (Surface currents)<br />

INDIA<br />

BANGLADESH<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

#######################################################################################################################################################<br />

Country.shp<br />

Sort-vc1.txt<br />

# -0.505 - -0.29<br />

# -0.29 - -0.209<br />

# -0.209 - -0.151<br />

# -0.151 - -0.102<br />

# -0.102 - -0.062<br />

# -0.062 - -0.021<br />

# -0.021 - 0.025<br />

# 0.025 - 0.078<br />

# 0.078 - 0.15<br />

# 0.15 - 0.31<br />

Figure - 18: V-component of velocity for 1981 Namkhana cyclone


Chapter Five<br />

Vulnerability Assessment for Coastal Districts of<br />

West Bengal<br />

5.1. Vulnerability Assessment<br />

In the last five decades, it has been observed that there was an exponential rise in human <strong>and</strong><br />

material losses from disaster events. Albeit there is no clear evidence that the frequency or intensity<br />

of disastrous events has increased. This clearly points out that the rise in disaster related<br />

consequences was related to the vulnerability of the people that has been induced by the human<br />

determined path of development.<br />

Whatever may be the disasters origin, its consequences will not only depend on the hazard’s intrinsic<br />

severity <strong>and</strong> intensity, but also on the people’s vulnerability <strong>and</strong> socio-economic resistance to violent<br />

<strong>and</strong> unexpected occurrences. Put into simple words, even which drive the disaster may have an<br />

origin beyond the limits of man; its ultimate effect upon the state of welfare will generally depend on<br />

man-made physical economic <strong>and</strong> social infrastructure.<br />

A proper underst<strong>and</strong>ing of the factors which determines a disaster’s effect, in terms of people’s<br />

welfare, is then important both in identifying <strong>and</strong> evaluating prevention measures aimed at reducing<br />

people’s vulnerability, after each disaster, the type <strong>and</strong> amount of damage experienced by affected<br />

population.<br />

It has also been observed that in every disaster, it is the communities that are on the receiving end,<br />

<strong>and</strong> those who are the first casualties <strong>and</strong> are hardest hit - are the poor. Prime reason is that, more<br />

<strong>and</strong> more people in lower socio-economic stratum tend to inhabit in marginal <strong>and</strong> exposed l<strong>and</strong>. It is<br />

poverty which drives this underprivileged people to live in precarious locations <strong>and</strong> adopt<br />

unsustainable means of survival – making them increasingly more vulnerable to the natural <strong>and</strong> man<br />

made disasters.<br />

Disaster management plans prepared on the feed back of the vulnerability studies, instead of only<br />

concentrating on the hazard assessment studies, will perhaps better address the issues of social<br />

equity <strong>and</strong> justice.<br />

This component of the study will focus on the inherent characteristics of the human settlements<br />

which make it vulnerable to the tropical cyclones <strong>and</strong> related risks. Assessing the vulnerability of the<br />

CHAPTER 5


5.2<br />

particular human settlement to a particular hazard should address its level of vulnerability with<br />

respect to each of the following aspect:<br />

a) Housing Stock<br />

b) Local economy<br />

c) Physical <strong>and</strong> Social Infrastructure<br />

d) Incidence of loss on various socio-economic groups<br />

e) Human Mortality <strong>and</strong> Morbidity<br />

The ‘Degree of Vulnerability’ of any system or its components can only be assessed through<br />

contemplating its performance under hypothetical hazard scenario with varying intensity. The study<br />

area lies within the Very High Damage Risk Zone delineated by the Vulnerability Atlas prepared by<br />

BMTPC, indicating that Average Recurrence Interval (ARI) of 50 years for wind gusts having speed<br />

more than 198 kmph (at the height of 10 m from the surface for more than 3 seconds). It also<br />

indicates same ARI for storm surge height coupled with tidal fluctuation of 12.5 m height on the South<br />

24-parganas coast <strong>and</strong> 12.0 m height on the East Midnapore coast. For the vulnerability assessment<br />

this hypothetical hazard scenario has been adopted, however, in some blocks, the level of hazard is<br />

expected to be far worse than this assumed intensity <strong>and</strong> periodicity.<br />

In the following sections, each aspect of vulnerability will be discussed along with comparative<br />

assessment at CD block level for the coastal districts of West Bengal.<br />

5.2. Assessment of Housing Stock<br />

Damage done to the human shelter is one of the most significant consequences of tropical cyclone.<br />

The wind pressures <strong>and</strong> suction effect on housing structures due to high velocity of wind can be<br />

sufficient to lift them off <strong>and</strong> fly away – known as aerofoil effects. The main destruction due to high<br />

wind velocities occurs in the traditional non-engineered buildings using local clay, adobe or agrobased<br />

materials. The engineered buildings also suffer huge damage unless appropriate precautions<br />

are taken into consideration during building construction. Apart from these, substantial non-structural<br />

damage occurs to doors <strong>and</strong> windows, cladding, wall panels etc in heavy engineered construct due<br />

to wind gust.<br />

On the other h<strong>and</strong>, tropical cyclones are always accompanied with heavy precipitation resulting in<br />

huge surface run-off from the catchment basin to the drainage channels. Combined with the storm<br />

surge these results in inundation <strong>and</strong> flooding. Damage to the housing stock depends on the water


5.3<br />

level <strong>and</strong> the period of inundation. Houses with low plinth heights <strong>and</strong> temporary wall materials are<br />

subjected to significant damage. However, it should be noted that damage due to inundation also<br />

depends on whether tropical cyclone has taken place pre-monsoon or post monsoon.<br />

The values of the Vulnerability Index (A) for Housing Stock from Cyclonic effects has been calculated<br />

by taking into account the share of houses having temporary roof material. Similarly, values of the<br />

Vulnerability Index (B) for Housing Stock from Inundation have been calculated by taking into<br />

account the share of houses having temporary wall material. Both indexes has been normalized for<br />

better interpretation in the way mentioned following.<br />

No.<br />

of houses with temporary roof material in ith CD block<br />

Ai<br />

=<br />

Total no.<br />

of houses in ith CD block<br />

Aˆ<br />

=<br />

i<br />

H<br />

i<br />

Ai<br />

− A<br />

A − A<br />

max<br />

min<br />

Bi<br />

B<br />

Bˆ<br />

−<br />

i<br />

=<br />

B − B<br />

min<br />

No.<br />

of houses with temporary wall material in ith CD block<br />

Bi<br />

=<br />

Total no.<br />

of houses in ith CD block<br />

max<br />

min<br />

min<br />

⎛ Aˆ<br />

i<br />

Bˆ<br />

⎞<br />

⎜<br />

+<br />

i<br />

= ⎟<br />

+<br />

2<br />

⎝ ⎠<br />

( Aˆ<br />

. Bˆ<br />

)<br />

i<br />

i<br />

Figure 5-1: Vulnerability mapping of the housing stock in the coastal districts of West Bengal


5.4<br />

The Composite Vulnerability Index (H) of the Housing Stock in a particular CD Block has been<br />

calculated taking into account the vulnerability indexes for both cyclonic effects <strong>and</strong> inundation<br />

effects [Refer Table 5-1 <strong>and</strong> Figure 5-1]. The functional form specified for aggregation has tried to<br />

capture both the additive effects as well as multiplicative effects of individual vulnerability indexes. It<br />

is tautological to mention that, a particular community vulnerable with respect to parameter A as well<br />

as B is more vulnerable compared to combined vulnerability of communities only vulnerable to<br />

parameter A or B. For example, degree of disability of a person who has lost his arm <strong>and</strong> leg both is<br />

more than added disability of one who has lost only his arm <strong>and</strong> one who has lost his leg.<br />

Table 5-1: Composite Vulnerability Index of Housing Stock in the coastal districts of West Bengal<br />

Sub-Div.<br />

C.D Block<br />

Total no.<br />

of Houses<br />

Share of<br />

houses with<br />

Temporary Roof<br />

Material<br />

( Â i<br />

)<br />

Share of houses<br />

with<br />

Temporary Wall<br />

Material<br />

( ) i<br />

Bˆ ( L )<br />

i<br />

Alipore Sub Division<br />

Thakurpukur-<br />

Maheshtala 34,835 0.724 0.522 0.968 0.955 1.237<br />

Bishnupur-I 51,792 0.863 0.792 0.982 0.976 1.656<br />

Bishnupur-II 47,584 0.771 0.613 0.978 0.970 1.385<br />

Budge-Budge(Part-I) 24,246 0.833 0.733 0.980 0.972 1.565<br />

Budge-Budge(Part-II) 43,296 0.827 0.720 0.979 0.971 1.545<br />

Baruipur<br />

Sub Division<br />

Sonarpur 39,655 0.853 0.771 0.957 0.939 1.578<br />

Joynagar-I 51,355 0.850 0.765 0.989 0.987 1.631<br />

Joynagar-II 44,641 0.925 0.910 0.984 0.978 1.835<br />

Kultali 41,854 0.971 1.000 0.996 0.998 1.997<br />

Baruipur 82,631 0.828 0.722 0.974 0.964 1.540<br />

Bhangore-I 44,970 0.875 0.814 0.977 0.969 1.680<br />

Bhangore-II 44,737 0.851 0.768 0.989 0.987 1.635<br />

Canning<br />

Sub Division<br />

Canning-I 58,500 0.927 0.915 0.985 0.981 1.846<br />

Canning-II 39,635 0.959 0.978 0.996 0.998 1.963<br />

Basanti 66,862 0.963 0.985 0.991 0.990 1.963<br />

Gosaba 60,625 0.964 0.986 0.997 0.998 1.977<br />

Diamond Harbour<br />

Sub Division<br />

Mograhat-I 49,172 0.857 0.779 0.985 0.980 1.643<br />

Mograhat-II 55,380 0.862 0.788 0.986 0.982 1.659<br />

M<strong>and</strong>irbazar 41,037 0.886 0.835 0.988 0.985 1.732<br />

Kulpi 56,138 0.926 0.913 0.993 0.994 1.860<br />

Falta 53,697 0.832 0.730 0.989 0.987 1.580<br />

D-Harbour-I 29,627 0.865 0.795 0.997 0.999 1.691<br />

D-Harbour-II 38,475 0.837 0.741 0.990 0.989 1.598<br />

Mathurapur-I 36,672 0.922 0.905 0.994 0.995 1.851<br />

Mathurapur-II 45,533 0.937 0.934 0.996 0.997 1.897<br />

Kakdwip<br />

Sub<br />

Division<br />

Kakdwip 55,156 0.907 0.876 0.992 0.992 1.802<br />

Namkhana 41,456 0.948 0.956 0.995 0.996 1.929<br />

Sagar 46,179 0.964 0.987 0.997 0.999 1.979


5.5<br />

Patharprotima 70,576 0.967 0.993 0.998 1.000 1.989<br />

Tamluk<br />

Sub Division<br />

Tamluk 50,690 0.848 0.762 0.524 0.277 0.731<br />

Sahid Matangini 40,997 0.861 0.786 0.546 0.312 0.794<br />

Panskura-I 76,071 0.863 0.791 0.666 0.494 1.033<br />

Panskura-II 64,697 0.784 0.638 0.540 0.302 0.663<br />

Moyna 49,786 0.942 0.943 0.688 0.528 1.233<br />

N<strong>and</strong>akumar 55,689 0.919 0.900 0.580 0.363 0.958<br />

N<strong>and</strong>igram-III 39,032 0.936 0.933 0.748 0.620 1.355<br />

Haldia<br />

Sub Division<br />

Mahisadal 41,740 0.868 0.800 0.556 0.327 0.825<br />

N<strong>and</strong>igram-I 40,304 0.943 0.947 0.826 0.738 1.542<br />

N<strong>and</strong>igram-II 26,249 0.960 0.979 0.822 0.733 1.573<br />

Sutahata 48,895 0.455 0.000 0.342 0.000 0.000<br />

Egra<br />

Sub Division<br />

Patashpur-I 34,921 0.961 0.981 0.920 0.882 1.798<br />

Patashpur-II 35,146 0.960 0.979 0.907 0.862 1.763<br />

Bhagwanpur-I 44,138 0.952 0.962 0.821 0.730 1.549<br />

Egra-I 32,658 0.950 0.959 0.908 0.864 1.739<br />

Egra-II 34,491 0.928 0.916 0.830 0.745 1.513<br />

Contai<br />

Sub Division<br />

Khejuri -I 27,469 0.942 0.945 0.837 0.755 1.563<br />

Khejuri-II 27,597 0.961 0.982 0.884 0.827 1.715<br />

Bhagwanpur-II 40,075 0.953 0.966 0.837 0.755 1.590<br />

Ramnagar-I 35,090 0.810 0.687 0.661 0.487 0.921<br />

Ramnagar-II 35,480 0.903 0.868 0.763 0.642 1.312<br />

Contai-I 36,112 0.895 0.853 0.751 0.624 1.272<br />

Contai-II 34,024 0.913 0.888 0.795 0.691 1.403<br />

Contai-III 33,474 0.925 0.910 0.834 0.751 1.514<br />

5.3. Vulnerability Assessment of Local economy<br />

A brief look at the local economy of the study area clearly indicates its agrarian nature. More than 48<br />

percent of the work force is engaged in primary sector activities, whereas 44 percent of the work<br />

force is absorbed in the service sector. Merely 6 percent of labor force in employed in manufacturing<br />

<strong>and</strong> processing activities. Preliminary investigation of the service employment reveals that most of<br />

them are in informal sector – a component which belongs to the marginal worker class.<br />

Looking at the low volume of industrial activity, the vulnerability assessment of the local economy has<br />

primarily concentrated on three aspects – agriculture, pisciculture <strong>and</strong> livestock. The prime reasoning<br />

being that most of the small <strong>and</strong> medium scale manufacturing activities are located in the urban<br />

areas <strong>and</strong> are comparatively better insulated from the vagaries of nature. On the other h<strong>and</strong>, informal<br />

service economy is primarily driven by human capital with low physical capital inputs.<br />

The Vulnerability Index of the Agriculture (A) has been estimated based on the total value of the<br />

st<strong>and</strong>ing crops <strong>and</strong> the opportunity cost due to lost productivity in coming years at the market prices


5.6<br />

(2004 prices) prevalent in district m<strong>and</strong>is. Intrusion of salinity in soil reduces the productivity of the<br />

l<strong>and</strong>, inflicting significant opportunity costs as well as restoration costs on the cultivator.<br />

Given its role in income <strong>and</strong> employment in the study area, the Vulnerability Index of Pisciculture (B)<br />

has also been estimated from the total fish production <strong>and</strong> prevailing local market prices.<br />

It should be noted that intrusion of salinity from storm surge related inundation diminishes the yield of<br />

the fish production, both for sweet <strong>and</strong> brackish water pisciculture.<br />

Similarly, the Vulnerability Index of the Livestock <strong>and</strong> Animal Husb<strong>and</strong>ry (C) has been estimated by<br />

their market value prevalent in the local markets.<br />

A = Total value of annual agricultural output ( INR)<br />

in ith CD block<br />

i<br />

B = Total value of fish output ( INR)<br />

in ith CD block<br />

i<br />

C = Total value of livestock ( INR)<br />

in ith CD block<br />

i<br />

All the three indexes have been normalized in the following way, for better inter CD block wise<br />

comparison of vulnerability, in parts <strong>and</strong> also in entirety.<br />

Aˆ<br />

=<br />

i<br />

Ai<br />

− A<br />

A − A<br />

max<br />

min<br />

min<br />

Bˆ<br />

i<br />

=<br />

Bi<br />

B<br />

max<br />

− B<br />

− B<br />

min<br />

min<br />

Cˆ<br />

i<br />

Ci<br />

=<br />

C<br />

max<br />

− C<br />

− C<br />

min<br />

min<br />

Figure 5-2: Vulnerability mapping of the local economy in the coastal districts of West Bengal


5.7<br />

The Composite Vulnerability Index for the Local Economy (E) has been assessed by considering<br />

the vulnerability indexes of agriculture, pisciculture <strong>and</strong> livestock [Refer Table 5-2 <strong>and</strong> Figure 5-2].<br />

The functional form specified for aggregation is similar to the one used for estimating Composite<br />

Index of Vulnerability for Housing Stock [Refer Section 5.2.]<br />

⎛ Aˆ<br />

i<br />

Bˆ<br />

i<br />

Cˆ<br />

⎞<br />

i<br />

E ⎜<br />

+ +<br />

⎟<br />

i<br />

=<br />

+<br />

3<br />

⎝ ⎠<br />

( Aˆ<br />

. Bˆ<br />

Cˆ<br />

)<br />

i<br />

i<br />

i<br />

Table 5-2: Composite Vulnerability Index of Local economy in the coastal districts of West Bengal<br />

Sub-<br />

C.D Block<br />

Div.<br />

( Â i<br />

)<br />

( Bˆ i<br />

)<br />

( Ĉ i<br />

)<br />

( E i<br />

)<br />

Thakurpukur-<br />

Maheshtala 0.0000 0.0002 0.383053 0.128<br />

Bishnupur-I 0.0305 0.0198 0.082344 0.044<br />

Alipore<br />

Sub Division<br />

Bishnupur-II 0.2251 0.2054 0.337292 0.272<br />

Budge-<br />

Budge(Part-I) 0.0020 0.0000 0.173545 0.059<br />

Budge-<br />

Budge(Part-II) 0.0149 0.1966 0.237498 0.150<br />

Baruipur<br />

Sub Division<br />

Sonarpur 0.0114 0.2488 0.442839 0.236<br />

Joynagar-I 0.0143 0.2152 0.323337 0.185<br />

Joynagar-II 0.2533 0.2570 0.237226 0.265<br />

Kultali 0.0420 0.5941 0.468972 0.380<br />

Baruipur 0.0502 0.2059 0.547945 0.274<br />

Bhangore-I 0.3063 0.1313 0.273773 0.248<br />

Bhangore-II 0.2433 0.4236 0.495718 0.439<br />

Canning<br />

Sub Division<br />

Canning-I 0.0260 0.9347 0.375476 0.455<br />

Canning-II 0.0815 1.0000 0.339351 0.501<br />

Basanti 0.2656 0.3538 0.901268 0.592<br />

Gosaba 0.2765 0.5739 0.907687 0.730<br />

Diamond Harbour<br />

Sub Division<br />

Mograhat-I 0.0398 0.1594 0 0.066<br />

Mograhat-II 0.0378 0.1922 0.214468 0.150<br />

M<strong>and</strong>irbazar 0.0201 0.0366 0.269151 0.109<br />

Kulpi 0.0342 0.3466 0.430276 0.275<br />

Falta 0.0459 0.0890 0.296854 0.145<br />

D-Harbour-I 0.0155 0.3700 0.137256 0.175<br />

D-Harbour-II 0.0206 0.1274 0.210887 0.120<br />

Mathurapur-I 0.0054 0.1054 0.192789 0.101<br />

Mathurapur-II 0.0358 0.4105 0.458835 0.308<br />

Kakdwip<br />

Sub Division<br />

Kakdwip 0.0425 0.4808 0.691852 0.419<br />

Namkhana 0.0376 0.5106 0.699353 0.429<br />

Sagar 0.0458 0.5585 0.756069 0.473<br />

Patharprotima 0.0833 0.9086 0.947036 0.718<br />

Tamluk<br />

Sub Division<br />

Tamluk 0.4139 0.0761 0.349495 0.291<br />

Sahid Matangini 0.2647 0.0213 0.293726 0.195<br />

Panskura-I 0.9297 0.0875 1 0.754<br />

Panskura-II 0.4790 0.0846 0.476509 0.366


5.8<br />

Moyna 0.6280 0.1592 0.542286 0.497<br />

N<strong>and</strong>akumar 0.5394 0.0706 0.567176 0.414<br />

N<strong>and</strong>igram-III 0.2716 0.1707 0.347487 0.279<br />

Haldia<br />

Sub Division<br />

Mahisadal 0.5332 0.0950 0.451286 0.383<br />

N<strong>and</strong>igram-I 0.2924 0.1481 0.413053 0.302<br />

N<strong>and</strong>igram-II 0.2317 0.0604 0.336969 0.214<br />

Sutahata 0.1309 0.0423 0.23964 0.139<br />

Egra<br />

Sub Division<br />

Patashpur-I 0.8649 0.2675 0.612328 0.723<br />

Patashpur-II 1.0000 0.0832 0.572259 0.599<br />

Bhagwanpur-I 0.4896 0.1376 0.50763 0.413<br />

Egra-I 0.5338 0.0848 0.606545 0.436<br />

Egra-II 0.5077 0.1440 0.564641 0.447<br />

Contai<br />

Sub Division<br />

Khejuri -I 0.2585 0.0730 0.331388 0.227<br />

Khejuri-II 0.1854 0.0780 0.377971 0.219<br />

Bhagwanpur-II 0.4078 0.1121 0.561826 0.386<br />

Ramnagar-I 0.2215 0.0291 0.327166 0.195<br />

Ramnagar-II 0.4324 0.0641 0.357101 0.294<br />

Contai-I 0.2065 0.1223 0.402414 0.254<br />

Contai-II 0.2729 0.0534 0.429623 0.258<br />

Contai-III 0.1842 0.0755 0.644642 0.310<br />

5.4. Vulnerability Assessment of Physical <strong>and</strong> Social Infrastructure<br />

Impact of a disaster can be appropriately evaluated by the time needed to restore normalcy. And<br />

disaster of any kind invariably tends to curtail the man’s ability to restore normalcy by severely<br />

affecting its physical <strong>and</strong> social infrastructure. In this study we will primarily concentrate on threes<br />

basic types of physical infrastructure, namely a) road connectivity, b) access to safe drinking water<br />

<strong>and</strong> c) access to hygienic sanitation facilities. Apart from that, we will also focus on a) education <strong>and</strong><br />

b) heath infrastructure <strong>and</strong> their role in dictating the vulnerability of a particular settlement.<br />

5.4.1. Physical infrastructure<br />

Road connectivity is of paramount importance as it guides the success of evacuation during pre <strong>and</strong><br />

post disaster stages as well as reaching of aid <strong>and</strong> relief to the affected population. Road connectivity<br />

index of a particular CD block has been derived from road length in km per sq.km area as well as per<br />

‘000 population. Both surfaced as well as unsurfaced roads have been taken into consideration along<br />

with relative share. Higher the road connectivity lesser it is vulnerable to impediments in the<br />

evacuation as well as aid <strong>and</strong> relief distribution. Disruption in the road connectivity can be either due<br />

to temporary blockages due uprooted trees or due to damage of the culverts <strong>and</strong> bridges. Based on


5.9<br />

the time required to restore the road connectivity, the mobility in the primary (within CD block),<br />

secondary (district level) <strong>and</strong> tertiary catchment (intra region) area will be affected.<br />

The index of road connectivity (A) along with its normalized value has been calculated as shown<br />

following.<br />

⎛ X<br />

Ai<br />

=<br />

⎜<br />

⎝ Yi<br />

where,<br />

X<br />

Y = Total area in sq.<br />

kms in ith CD block<br />

i<br />

Z<br />

i<br />

i<br />

i<br />

Aˆ<br />

=<br />

i<br />

⎞ ⎛ X ⎞<br />

i<br />

⎟.<br />

⎜<br />

Z<br />

⎟<br />

⎠ ⎝ i ⎠<br />

= Total length of roads in kms in ith CD block<br />

= Total population in '000 persons in ith CD block<br />

A<br />

A<br />

max<br />

max<br />

− Ai<br />

− A<br />

min<br />

Access to safe drinking water source is one of the most crucial parameters which dictate the<br />

incidence of epidemics especially from water borne diseases in the aftermath of flood. Tropical<br />

cyclones, often leading to inundation <strong>and</strong> flooding contaminate the sources of the drinking water<br />

creating pathogenic condition <strong>and</strong> increasing the chances of mortality <strong>and</strong> morbidity in child <strong>and</strong> aged<br />

section of the population. Similarly, sources of defecation will guide the extent of contamination of the<br />

local water sources as well as the level of environmental degradation after the flooding. The<br />

vulnerability of water supply <strong>and</strong> sanitation facilities are estimated based on the percentage share of<br />

the households having access to sources of water with low chances of contamination (Tap <strong>and</strong> Tube<br />

well) as well as access to hygienic defecation facilities (Pit latrine <strong>and</strong> Water closet).<br />

⎛ X<br />

i<br />

⎞<br />

Bi<br />

=<br />

⎜<br />

Z<br />

⎟.100<br />

⎝ i ⎠<br />

⎛ Yi<br />

⎞<br />

Ci<br />

=<br />

⎜ .100<br />

Z<br />

⎟<br />

⎝ i ⎠<br />

where,<br />

X<br />

= Total no.<br />

of HH having access to safe drinking water in i th CD block<br />

Yi<br />

= Total no.<br />

of HH having access to safe sanitation facility in i th CD block<br />

Z = Total no.<br />

of HH in i th CD block<br />

i<br />

i<br />

Bˆ<br />

i<br />

=<br />

B<br />

B<br />

max<br />

max<br />

− Bi<br />

− B<br />

min<br />

ˆ C<br />

Ci<br />

=<br />

C<br />

max<br />

max<br />

− Ci<br />

− C<br />

min


5.10<br />

5.4.2. Social infrastructure<br />

Health <strong>and</strong> education facilities are the most important social infrastructure towards minimizing the<br />

indirect damage, beginning almost after the incidence of disaster <strong>and</strong> possibly extending into the<br />

rehabilitation period.<br />

Vulnerability of the health infrastructure is assessed at the CD block level by the degree of access its<br />

settlements has with respect to health care facilities (Primary Health Care center, Sub center, Health<br />

center or Hospital facilities). Higher the level of access, lesser is impediment in reducing the burden<br />

of disease after the disaster has taken place. Past records clearly show that diarrhoeal diseases<br />

claim too many precious human lives (mostly children from age group 0-10 <strong>and</strong> the aged population<br />

i.e. 60 + age group), which can be significantly reduced by preventive health care measures – <strong>and</strong><br />

communities with poor health facilities just cannot do that.<br />

Existing educational facilities, apart from providing education, actively take part in imparting mass<br />

literacy <strong>and</strong> community awareness programs. Communities with better level of education<br />

infrastructure have greater probability of minimizing the impact of tropical cyclones due to increased<br />

awareness <strong>and</strong> community level initiatives. Moreover, communities with better educational facilities<br />

will have minimum disruption in education due to faster restoration of normalcy.<br />

Level of access to education facilities (primary school, intermediate school, secondary school <strong>and</strong><br />

other higher educational institutions) will guide the vulnerability of the education infrastructure.<br />

⎛ X ⎞<br />

i<br />

Di<br />

=<br />

⎜<br />

Z<br />

⎟<br />

⎝ i ⎠<br />

⎛ Y ⎞<br />

i<br />

Ei<br />

=<br />

⎜<br />

Z<br />

⎟<br />

⎝ i ⎠<br />

where,<br />

X = Total no.<br />

of health care facilities in i th CD block<br />

Y = Total no.<br />

of education facilities in i th CD block<br />

i<br />

Z = Total no.<br />

of inhabited villages in i th CD block<br />

i<br />

i<br />

Dˆ<br />

i<br />

=<br />

D<br />

D<br />

max<br />

max<br />

− Di<br />

− D<br />

min<br />

ˆ E<br />

Ei<br />

=<br />

E<br />

max<br />

max<br />

− Ei<br />

− E<br />

min


5.11<br />

Figure 5-2: Vulnerability mapping of the infrastructure in the coastal districts of West Bengal<br />

Composite Index of Vulnerability for Infrastructure (I) has also been estimated by taking<br />

individual indexes into consideration for both physical <strong>and</strong> social infrastructure [Refer Table 5-3 <strong>and</strong><br />

Figure 5-3]. The functional form specified for aggregation is similar to the one used for estimating<br />

Composite Index of Vulnerability for Housing Stock [Refer Section 5.2.]<br />

( Aˆ<br />

. Bˆ<br />

. Cˆ<br />

. Dˆ<br />

. Eˆ<br />

)<br />

⎛ Aˆ<br />

Bˆ<br />

Cˆ<br />

Dˆ<br />

Eˆ<br />

⎞<br />

I ⎜<br />

i<br />

+<br />

i<br />

+<br />

i<br />

+<br />

i<br />

+<br />

i<br />

i<br />

=<br />

⎟<br />

i i i i i<br />

5<br />

+<br />

⎝<br />

⎠<br />

where,<br />

Aˆ<br />

= Normalised Vu ln erability Index of Road connectivity in i th CD block<br />

i<br />

Bˆ<br />

= Normalised Vu ln erability Index of Drinking water source in i th CD block<br />

i<br />

Cˆ<br />

= Normalised Vu ln erability Index of Sanitation facility in i th CD block<br />

i<br />

Dˆ<br />

= Normalised Vu ln erability Index of Health inf rastructure in i th CD block<br />

i<br />

Eˆ<br />

= Normalised Vu ln erability Index of Education Infrastructure in i th CD block<br />

i<br />

Table 5-3: Composite Vulnerability Index of Infrastructure in the coastal districts of West Bengal<br />

Sub-Div. C.D Block ( Â ) i<br />

( Bˆ i<br />

) ( Ĉ i<br />

) ( Dˆ i<br />

) ( i<br />

)<br />

Alipore<br />

Sub Division<br />

Ê ( I )<br />

i<br />

Thakurpukur-<br />

Maheshtala 0.8850 0.704 0.062 0.529 0.714 0.418<br />

Bishnupur-I 0.7689 0.668 0.463 0.583 0.769 0.635<br />

Bishnupur-II 0.6779 0.634 0.458 0.947 0.664 0.724<br />

Budge-Budge(Part-I) 0.2707 0.950 0.469 0.504 0.280 0.503


5.12<br />

Budge-Budge(Part-II) 0.0000 0.659 0.580 0.504 0.715 0.629<br />

Baruipur<br />

Sub Division<br />

Sonarpur 1.0000 0.846 0.148 0.615 0.987 0.595<br />

Joynagar-I 0.6717 0.520 0.536 0.372 0.958 0.577<br />

Joynagar-II 0.9191 0.928 0.034 0.320 0.944 0.455<br />

Kultali 0.9646 0.846 0.821 0.062 0.969 0.581<br />

Baruipur 0.9923 0.748 0.266 0.719 0.988 0.686<br />

Bhangore-I 0.9885 0.880 0.549 0.909 1.000 1.107<br />

Bhangore-II 0.9440 0.918 0.483 0.833 0.985 1.007<br />

Canning<br />

Sub Division<br />

Canning-I 0.9392 0.838 0.510 0.947 0.655 0.855<br />

Canning-II 0.9990 0.962 0.701 0.536 0.765 0.870<br />

Basanti 0.9887 0.800 0.817 0.636 0.580 0.808<br />

Gosaba 0.9868 0.824 0.731 0.336 0.357 0.521<br />

Diamond Harbour<br />

Sub Division<br />

Mograhat-I 0.7472 0.809 0.988 0.713 0.755 1.083<br />

Mograhat-II 0.9389 0.916 0.547 0.931 0.697 0.943<br />

M<strong>and</strong>irbazar 0.9212 1.000 1.000 0.833 0.785 1.377<br />

Kulpi 0.9946 0.977 0.800 0.778 0.791 1.150<br />

Falta 0.9332 0.281 0.499 0.887 0.799 0.593<br />

D-Harbour-I 0.8148 0.554 0.584 0.624 0.794 0.672<br />

D-Harbour-II 0.9331 0.791 0.451 0.559 0.751 0.660<br />

Mathurapur-I 0.6421 0.912 0.752 0.784 0.759 1.049<br />

Mathurapur-II 0.9568 0.749 0.737 0.037 0.000 0.305<br />

Kakdwip<br />

Sub Division<br />

Kakdwip 0.8611 0.556 0.662 0.570 0.201 0.440<br />

Namkhana 0.9689 0.000 0.836 0.599 0.484 0.384<br />

Sagar 0.9004 0.205 0.799 0.685 0.346 0.446<br />

Patharprotima 0.8969 0.863 0.908 0.000 0.507 0.455<br />

Tamluk<br />

Sub Division<br />

Tamluk 0.9463 0.647 0.660 0.681 0.798 0.790<br />

Sahid Matangini 0.9393 0.809 0.478 0.753 0.799 0.801<br />

Panskura-I 0.9156 0.610 0.663 0.953 0.938 0.994<br />

Panskura-II 0.9579 0.834 0.502 0.645 0.788 0.766<br />

Moyna 0.9874 0.653 0.744 0.652 0.722 0.783<br />

N<strong>and</strong>akumar 0.9292 0.637 0.448 0.640 0.749 0.632<br />

N<strong>and</strong>igram-III 0.9299 0.850 0.734 0.722 0.851 1.014<br />

Haldia<br />

Sub Division<br />

Mahisadal 0.8343 0.624 0.612 0.780 0.731 0.767<br />

N<strong>and</strong>igram-I 0.9732 0.907 0.445 0.845 0.821 0.883<br />

N<strong>and</strong>igram-II 0.6394 0.959 0.000 0.384 0.633 0.395<br />

Sutahata 0.9522 0.777 0.555 0.688 0.863 0.833<br />

Egra<br />

Sub Division<br />

Patashpur-I 0.8638 0.994 0.494 0.916 0.829 1.020<br />

Patashpur-II 0.9932 0.953 0.842 0.972 0.934 1.469<br />

Bhagwanpur-I 0.9120 0.757 0.228 0.815 0.869 0.656<br />

Egra-I 0.9232 0.926 0.514 1.000 0.887 1.087<br />

Egra-II 0.8874 0.783 0.690 0.711 0.867 0.943<br />

Contai<br />

Sub<br />

Division<br />

Khejuri -I 0.8306 0.894 0.520 0.875 0.584 0.812<br />

Khejuri-II 0.9315 0.696 0.842 0.885 0.887 1.122<br />

Bhagwanpur-II 0.8337 0.676 0.571 0.902 0.877 0.910


5.13<br />

Ramnagar-I 0.9920 0.697 0.744 0.922 0.880 1.069<br />

Ramnagar-II 0.9306 0.790 0.217 0.817 0.909 0.674<br />

Contai-I 0.9753 0.710 0.191 0.908 0.930 0.662<br />

Contai-II 0.9496 0.830 0.508 0.852 0.914 0.949<br />

Contai-III 0.1820 0.619 0.296 0.921 0.898 0.699<br />

5.5. Incidence of loss on various socio-economic groups<br />

Magnitude of loss due to natural disasters is important, but it is also important to analyze the<br />

incidence of loss on various socio-economic groups. A brief look at the socio-economic<br />

characteristics indicate that some of the areas are one the most impoverished <strong>and</strong> backward region<br />

in the state. And therefore the true vulnerability of human welfare from tropical cyclones can only be<br />

assessed with due attention to socio-economic inequalities persistent spatially across the study area.<br />

Moreover, the study area is endowed with vast reserve of ecologically sensitive mangrove forests. It<br />

has been observed that livelihood of socio-economically weaker groups are dependent on these<br />

forests. And in distress, this dependence rises significantly leading to rapid deterioration of the<br />

environmental assets.<br />

Among diverse range of indicators, eight indicators have been chosen to represent various aspects<br />

of socio-economic vulnerability among the CD blocks. The indicators are mentioned following:<br />

1. Share of workforce engaged in primary sector activities<br />

2. Share of SC/ST population<br />

3. Access to banking services<br />

4. Net savings<br />

5. Access to household electricity connection<br />

6. Type of cooking fuel used<br />

7. Female literacy<br />

8. Access to Radio<br />

In the following sections, the significance <strong>and</strong> role of each indicator are elaborated along with the<br />

methodology for quantification.<br />

5.5.1. Share of workforce engaged in primary sector activities<br />

In the previous sections, it has been mentioned that primary sector activities are the principle sources<br />

of income <strong>and</strong> employment in the study area. It has also been found the primary sector activities,<br />

particularly agriculture, pisciculture <strong>and</strong> animal husb<strong>and</strong>ry, are more vulnerable compared to


5.14<br />

secondary <strong>and</strong> tertiary activities. Therefore, the impact of tropical cyclone will be more pronounced<br />

on the people depending for livelihood on primary sector activities compared to others. Degree of<br />

vulnerability (A) will vary across the CD blocks with varying share of primary sector workforce. Higher<br />

the share of workforce involvement in these activities, greater the incidence of economic distress due<br />

to cyclones <strong>and</strong> consequential flooding.<br />

⎛Workforce<br />

engaged in primary sector<br />

activities in ith CD block ⎞<br />

Ai<br />

= ⎜<br />

⎟.100<br />

⎝<br />

Total workforce in ith CD block<br />

⎠<br />

ˆ Ai<br />

− Amin<br />

Ai<br />

=<br />

A − A<br />

max<br />

min<br />

5.5.2. Share of SC/ST population<br />

There is no denial of the fact that SC/ST population are one the most disadvantaged sections of the<br />

community <strong>and</strong> any loss due to natural disasters incident on them will viciously affect their level of<br />

welfare. Besides that, restoration of normalcy for these socio-economic groups is severely limited<br />

due to lower endowment of resources. As significant percentage of SC/ST population inhabit in some<br />

parts of the study area, it is imperative to include this parameter in the socio-economic vulnerability<br />

assessment framework.<br />

⎛ Total population of backward classes in ith CD block ⎞<br />

Bi<br />

= ⎜<br />

⎟<br />

⎝ Total population in ith CD block ⎠<br />

ˆ Bi<br />

− Bmin<br />

Bi<br />

=<br />

B − B<br />

max<br />

min<br />

5.5.3. Access to banking services<br />

In developed sections of the society, the elements which are at risk (physical assets) from natural<br />

disaster consists a small part of the total asset, as the bulk component is protected <strong>and</strong> insured by<br />

banks <strong>and</strong> other financial institutions. However, this trend gets reversed in case of poorer sections of<br />

community. Number of households accessing banking facilities acts as a decent proxy to appraise<br />

the share of total household assets exposed to risk events.<br />

Higher the number of households availing banking services in a particular CD block, lesser will be the<br />

incidence of misery due cyclones <strong>and</strong> consequential flooding.


5.15<br />

C<br />

i<br />

Cˆ<br />

i<br />

⎛ Total no.<br />

of<br />

= ⎜<br />

⎝<br />

Cmax<br />

− Ci<br />

=<br />

C − C<br />

max<br />

min<br />

households availing banking services in ith CD block<br />

Total no.<br />

of households in ith CD block<br />

⎞<br />

⎟<br />

⎠<br />

5.5.4. Net savings<br />

Net savings per household particularly in the small saving scheme gives important insight into the<br />

capability of restoration after the extreme event has taken place. It also reflects the material<br />

prosperity of the households as savings is directly proportional to the income, assuming that vast<br />

change in consumption pattern will not be exhibited across the study area.<br />

D = Savings per household in ith CD block<br />

i<br />

Dˆ<br />

i<br />

D<br />

=<br />

D<br />

max<br />

max<br />

− Di<br />

− D<br />

min<br />

5.5.5. Access to household electricity connection<br />

One of the frequently used indicator as proxy to level of material welfare of households is its access<br />

to electricity, primarily for the purpose of illumination. Communities with higher level of material<br />

welfare is expected to perform better in case of extreme hazardous events – as they have greater<br />

resources to restore normalcy back. Number of households having electrical connection at household<br />

level has been taken as an indicator of socio-economic vulnerability.<br />

⎛ Total no.<br />

of<br />

Ei<br />

= ⎜<br />

⎝<br />

ˆ Emax<br />

− Ei<br />

Ei<br />

=<br />

E − E<br />

max<br />

min<br />

households with access to electricity in ith CD block<br />

Total no.<br />

of households in ith CD block<br />

⎞<br />

⎟<br />

⎠<br />

5.5.6. Type of cooking fuel used<br />

Type of the cooking fuel used directly indicates the level of affluence of the particular household.<br />

More importantly it explores the dependence of household activities on the adjoining forest reserves.<br />

Frequently issues have been raised regarding the exploitation of the forests for fire wood collection.<br />

After the extreme events, the dependence on forests rises for the communities adjoining them<br />

leading to rapid deterioration of natural environment – which can have significant repercussions in<br />

the long term. Number of households having access to proper cooking fuel (LPG, Biogas, coal <strong>and</strong><br />

kerosene) has been used as an indicator of socio-economic vulnerability.


5.16<br />

F<br />

i<br />

Fˆ<br />

i<br />

⎛ Total no.<br />

of<br />

= ⎜<br />

⎝<br />

Fmax<br />

− Fi<br />

=<br />

F − F<br />

max<br />

min<br />

households u sin g proper cooking fuel in ith CD block<br />

Total no.<br />

of households in ith CD block<br />

⎞<br />

⎟<br />

⎠<br />

5.5.7. Female literacy<br />

Awareness of the community plays an important role in reducing the impact of disasters by taking<br />

preventive measures <strong>and</strong> mitigating the consequences after the event has happened. Cost of<br />

prevention is far lesser than the value of the loss in its absence <strong>and</strong> there is universal m<strong>and</strong>ate to<br />

upgrade the capability of communities to take up these measures. On the other h<strong>and</strong>, the indirect<br />

damage especially mortality <strong>and</strong> morbidity due to pathogenic environment developed aftermath of an<br />

extreme event can be greatly reduced by adopting simple preventive health measures.<br />

It is universally acclaimed fact that awareness quotient of any community cannot better be<br />

represented by the female literacy. CD block wise comparison of female literacy will help assess the<br />

level of awareness <strong>and</strong> pro-activeness.<br />

⎛ Total literate<br />

Gi<br />

=<br />

⎜<br />

⎝ Total<br />

ˆ Gmax<br />

− Gi<br />

Gi<br />

=<br />

G − G<br />

max<br />

min<br />

female population in ith CD block ⎞<br />

.100<br />

population in ith CD block<br />

⎟<br />

⎠<br />

5.5.8. Access to Radio<br />

Dissemination of warning can play a deciding role in minimizing the loss of human lives as well as<br />

physical assets. Radio <strong>and</strong> television are the most pervasive instruments to achieve this end.<br />

Important messages concerned with relief <strong>and</strong> rehabilitation can also be broadcasted through them –<br />

reducing the misery of the affected people. However, given the price <strong>and</strong> mobility aspect of the<br />

equipment, number of households having possession of radio has been used as an indicator for<br />

assessing this aspect of socioeconomic vulnerability.<br />

⎛ Total no.<br />

of households in possession of radio in ith CD block ⎞<br />

Hi<br />

=<br />

⎜<br />

Total no.<br />

of households in ith CD block<br />

⎟<br />

⎝<br />

⎠<br />

ˆ H<br />

max<br />

− Hi<br />

Hi<br />

=<br />

H − H<br />

max<br />

min


5.17<br />

Figure 5-3: Mapping of the socio-economic vulnerability in the coastal districts of West Bengal<br />

Composite Index of Socio-economic Vulnerability (S) has also been estimated by taking<br />

individual vulnerability indexes into consideration all the attributes discussed above [Refer Table 5-4<br />

<strong>and</strong> Figure 5-4].<br />

The functional form specified for aggregation is similar to the one used for estimating Composite<br />

Index of Vulnerability for Housing Stock [Refer Section 5.2.]<br />

⎛ Aˆ<br />

i<br />

+ Bˆ<br />

i<br />

+ Cˆ<br />

i<br />

+ Dˆ<br />

i<br />

+ Eˆ<br />

i<br />

+ Fˆ<br />

i<br />

+ Gˆ<br />

i<br />

+ Hˆ<br />

Si<br />

= ⎜<br />

⎝<br />

8<br />

where,<br />

Aˆ<br />

i<br />

= Index of<br />

Bˆ<br />

i<br />

= Index of<br />

Cˆ<br />

i<br />

= Index of<br />

Dˆ<br />

i<br />

= Index of<br />

Eˆ<br />

i<br />

= Index of<br />

Fˆ<br />

i<br />

= Index of<br />

Gˆ<br />

i<br />

= Index of<br />

Hˆ<br />

= Index of<br />

i<br />

i<br />

⎞<br />

⎟ +<br />

⎠<br />

( Aˆ<br />

. Bˆ<br />

. Cˆ<br />

. Dˆ<br />

. Eˆ<br />

. Fˆ<br />

. Gˆ<br />

. Hˆ<br />

)<br />

share of workforce in Pr imary sector<br />

activities in i th CD block<br />

share of Backward population in i th CD block<br />

share of households availing Banking facility in i th CD block<br />

Savings per household in i th CD block<br />

share of households having Electrical connection in i th CD block<br />

share of households having proper Cooking fuel in i th CD block<br />

percentage of Female literacy in i th CD block<br />

share of households in possesion of Radio in i th CD block<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i


5.18<br />

Table 5-4: Composite Index of Socio-economic Vulnerability in the coastal districts of West Bengal<br />

Sub-<br />

Div.<br />

C.D Block ( Â i<br />

) ( Bˆ i<br />

) ( Ĉ i<br />

) ( Dˆ i<br />

) ( Ê i<br />

) ( Fˆ i<br />

) ( Ĝ i<br />

) ( i<br />

)<br />

Ĥ ( S )<br />

i<br />

Alipore<br />

Sub Division<br />

Thakurpukur-<br />

Maheshtala 0.023 0.482 0.485 0.650 0.185 0.115 0.239 0.527 0.338<br />

Bishnupur-I 0.188 0.618 0.975 0.813 0.480 0.688 0.425 0.768 0.629<br />

Bishnupur-II 0.127 0.141 1.000 0.819 0.368 0.614 0.313 0.711 0.512<br />

Budge-<br />

Budge(Part-I) 0.000 0.214 0.870 0.650 0.536 0.603 0.276 0.690 0.480<br />

Budge-<br />

Budge(Part-II) 0.165 0.212 0.973 0.969 0.388 0.751 0.328 0.757 0.570<br />

Baruipur<br />

Sub Division<br />

Sonarpur 0.154 0.792 0.451 0.000 0.474 0.522 0.410 0.474 0.410<br />

Joynagar-I 0.197 0.515 0.472 0.788 0.739 0.736 0.624 0.714 0.607<br />

Joynagar-II 0.336 0.458 0.796 0.926 0.915 0.956 0.858 0.768 0.817<br />

Kultali 0.486 0.647 0.902 0.878 1.000 1.000 0.880 0.533 0.908<br />

Baruipur 0.317 0.545 0.000 0.398 0.000 0.000 0.464 0.618 0.293<br />

Bhangore-I 0.273 0.265 0.717 0.955 0.693 0.892 0.698 0.698 0.664<br />

Bhangore-II 0.326 0.249 0.748 0.971 0.783 0.941 0.504 0.824 0.686<br />

Canning<br />

Sub Division<br />

Canning-I 0.440 0.678 0.637 0.997 0.730 0.429 0.789 0.772 0.720<br />

Canning-II 0.561 0.359 0.878 0.998 0.958 0.979 1.000 1.000 1.007<br />

Basanti 0.615 0.573 0.724 0.995 0.993 0.977 0.889 0.622 0.934<br />

Gosaba 0.484 1.000 0.676 1.000 0.985 0.987 0.538 0.187 0.764<br />

Diamond Harbour<br />

Sub Division<br />

Mograhat-I 0.195 0.229 0.602 0.997 0.755 0.929 0.541 0.742 0.631<br />

Mograhat-II 0.219 0.443 0.434 0.959 0.686 0.887 0.561 0.858 0.643<br />

M<strong>and</strong>irbazar 0.123 0.553 0.704 0.922 0.782 0.898 0.632 0.798 0.692<br />

Kulpi 0.236 0.380 0.570 0.961 0.792 0.897 0.567 0.692 0.651<br />

Falta 0.241 0.273 0.495 0.774 0.471 0.844 0.387 0.778 0.536<br />

D-Harbour-I 0.197 0.207 0.777 0.448 0.763 0.896 0.530 0.972 0.604<br />

D-Harbour-II 0.167 0.309 0.669 0.867 0.690 0.838 0.399 0.710 0.586<br />

Mathurapur-I 0.168 0.461 0.793 0.978 0.858 0.954 0.655 0.902 0.750<br />

Mathurapur-II 0.448 0.370 0.749 0.999 0.913 0.971 0.587 0.477 0.720<br />

Kakdwip<br />

Sub Division<br />

Kakdwip 0.716 0.452 0.622 0.987 0.765 0.819 0.467 0.388 0.675<br />

Namkhana 0.532 0.298 0.739 0.986 0.931 0.978 0.225 0.000 0.586<br />

Sagar 0.690 0.324 0.712 0.990 0.985 0.990 0.239 0.015 0.619<br />

Patharprotima 1.000 0.271 0.799 0.990 0.987 0.989 0.425 0.043 0.692<br />

Tamluk<br />

Sub Division<br />

Tamluk 0.242 0.048 0.471 0.884 0.601 0.909 0.185 0.518 0.482<br />

Sahid Matangini 0.271 0.000 0.570 0.861 0.557 0.850 0.088 0.464 0.458<br />

Panskura-I 0.411 0.107 0.295 0.937 0.381 0.787 0.242 0.457 0.453<br />

Panskura-II 0.234 0.033 0.204 0.721 0.031 0.446 0.225 0.471 0.296<br />

Moyna 0.385 0.261 0.541 0.778 0.861 0.979 0.120 0.423 0.545<br />

N<strong>and</strong>akumar 0.368 0.115 0.536 0.835 0.781 0.947 0.205 0.396 0.524<br />

N<strong>and</strong>igram-III 0.199 0.057 0.803 0.854 0.924 0.966 0.148 0.267 0.527<br />

Haldia<br />

Sub Division<br />

Mahisadal 0.263 0.081 0.387 0.881 0.769 0.863 0.083 0.230 0.445<br />

N<strong>and</strong>igram-I 0.201 0.195 0.653 0.881 0.972 0.980 0.142 0.326 0.545<br />

N<strong>and</strong>igram-II 0.135 0.108 0.702 0.894 0.982 0.987 0.103 0.078 0.499<br />

Sutahata 0.082 0.362 0.429 0.881 0.719 0.853 0.120 0.169 0.452


5.19<br />

Egra<br />

Sub Division<br />

Patashpur-I 0.323 0.125 0.665 0.871 0.943 0.987 0.157 0.207 0.535<br />

Patashpur-II 0.242 0.091 0.612 0.930 0.922 0.988 0.248 0.307 0.543<br />

Bhagwanpur-I 0.288 0.123 0.466 0.939 0.899 0.974 0.142 0.239 0.509<br />

Egra-I 0.230 0.066 0.685 0.902 0.875 0.986 0.308 0.460 0.565<br />

Egra-II 0.220 0.214 0.557 0.900 0.885 0.980 0.185 0.400 0.544<br />

Contai<br />

Sub Division<br />

Khejuri -I 0.152 0.107 0.615 0.750 0.971 0.984 0.103 0.198 0.485<br />

Khejuri-II 0.143 0.761 0.718 0.938 0.999 0.994 0.350 0.224 0.647<br />

Bhagwanpur-II 0.250 0.164 0.501 0.886 0.905 0.961 0.006 0.183 0.482<br />

Ramnagar-I 0.158 0.104 0.522 0.899 0.747 0.929 0.134 0.563 0.507<br />

Ramnagar-II 0.202 0.098 0.685 0.903 0.816 0.981 0.063 0.392 0.518<br />

Contai-I 0.138 0.100 0.560 0.826 0.886 0.964 0.028 0.205 0.464<br />

Contai-II 0.203 0.053 0.650 0.943 0.929 0.981 0.140 0.306 0.526<br />

Contai-III 0.191 0.091 0.530 0.918 0.944 0.967 0.000 0.150 0.474<br />

5.6. Human Mortality <strong>and</strong> Morbidity<br />

Human mortality <strong>and</strong> morbidity is one the most devastating impacts of tropical cyclones. Many lives<br />

are lost at the onslaught of the cyclones <strong>and</strong> many more are being lost in the subsequent phases –<br />

which can be termed as direct <strong>and</strong> indirect consequences.<br />

The amount of direct death <strong>and</strong> injury caused inl<strong>and</strong> by high velocity cyclonic winds is mostly<br />

attributable to the temporary nature of human shelter. Loose roof materials fly off <strong>and</strong> hit as<br />

projectiles due to wind gusts. Uprooted trees <strong>and</strong> other objects find it easy to damage shelters made<br />

with temporary materials. Therefore, degree of vulnerability of human life is directly correlated to the<br />

degree of Composite Vulnerability (H) of the Housing stock [Refer Section 5.2.].<br />

On the other h<strong>and</strong>, indirect death <strong>and</strong> morbidity takes place due to inadequate aid <strong>and</strong> relief supply<br />

due to poor road connectivity, pathogenic environment, non-existent heath care facilities <strong>and</strong> lack of<br />

awareness. The incidence of indirect loss is particularly high on certain age groups – especially<br />

children in the 0-10 age cohort <strong>and</strong> elderly population with age greater than 60. The magnitude of<br />

indirect loss is more aggravated by socio-economic backwardness.<br />

In this study, we have tried to identify the population at risk <strong>and</strong> estimate the relative degree of<br />

vulnerability based on several parameters. Composite Index of Vulnerability for the housing stock is<br />

used as a proxy of degree of vulnerability to direct human mortality <strong>and</strong> morbidity (M'). On the<br />

contrary, degree of vulnerability to indirect human mortality <strong>and</strong> morbidity (M'') is estimated from the<br />

composite index of vulnerability for physical <strong>and</strong> social infrastructure (I) along with Composite Index<br />

of Socio-economic vulnerability (S) [Refer Section 5.4. <strong>and</strong> 5.5.].


5.20<br />

M ′ = H<br />

M ′′ = I . S<br />

where,<br />

H<br />

I<br />

S<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

i<br />

= Composite Index of Vu ln erability of the Hou sin g stock<br />

= Composite Index of Vu ln erability of Physical <strong>and</strong> Social<br />

= Composite Index of Socio − economic Vu ln erability<br />

Infrastructure<br />

Figure 5-4: Vulnerability mapping of the human life in the coastal districts of West Bengal<br />

Composite Index of Vulnerability to Human Life (M) has also been estimated by taking individual<br />

vulnerability indexes into consideration for both direct (M') <strong>and</strong> indirect (M'') mortality <strong>and</strong> morbidity<br />

[Refer Table 5-5 <strong>and</strong> Figure 5-5].<br />

The functional form specified for aggregation is similar to the one used for estimating Composite<br />

Index of Vulnerability for Housing Stock [Refer Section 5.2.].<br />

Table 5-5: Composite Index of Vulnerability to human life in the coastal districts of West Bengal<br />

Sub-Div. C.D Block<br />

Total<br />

Population in Age Cohort 0-10 &<br />

(Mi')<br />

Population<br />

above 60 yrs<br />

(Mi'') (Mi)<br />

Thakurpukur-<br />

Maheshtala<br />

136903 1.237 47573 0.201 0.967<br />

Bishnupur-I 206370 1.656 71713 0.476 1.855<br />

Bishnupur-II 190636 1.385 66246 0.410 1.466<br />

Budge-Budge(Part-I) 99945 1.565 34730 0.245 1.289<br />

Budge-Budge(Part-II) 173446 1.545 60272 0.280 1.346<br />

Alipore<br />

Sub Division<br />

Baruipu<br />

r<br />

Sub<br />

Divisio<br />

n<br />

Sonarpur 167408 1.578 58174 0.326 1.466<br />

Joynagar-I 219090 1.631 76133 0.412 1.693


5.21<br />

Joynagar-II 209145 1.835 72677 0.521 2.133<br />

Kultali 187989 1.997 65326 0.701 2.749<br />

Baruipur 351439 1.540 122125 0.259 1.298<br />

Bhangore-I 204380 1.680 71022 0.863 2.721<br />

Bhangore-II 207580 1.635 72134 0.807 2.540<br />

Canning<br />

Sub Division<br />

Canning-I 244627 1.846 85007 0.739 2.658<br />

Canning-II 195967 1.963 68098 1.076 3.632<br />

Basanti 278592 1.963 96810 0.937 3.291<br />

Gosaba 222822 1.977 77430 0.549 2.347<br />

Diamond Harbour<br />

Sub Division<br />

Mograhat-I 228335 1.643 79346 0.710 2.342<br />

Mograhat-II 262092 1.659 91076 0.714 2.370<br />

M<strong>and</strong>irbazar 183131 1.732 63638 1.045 3.198<br />

Kulpi 242752 1.860 84356 0.876 2.998<br />

Falta 221695 1.580 77039 0.414 1.651<br />

D-Harbour-I 133366 1.691 46344 0.486 1.910<br />

D-Harbour-II 165233 1.598 57418 0.490 1.828<br />

Mathurapur-I 164650 1.851 57215 0.774 2.745<br />

Mathurapur-II 198281 1.897 68902 0.357 1.805<br />

Kakdwip<br />

Sub Division<br />

Kakdwip 239326 1.802 83165 0.409 1.843<br />

Namkhana 160627 1.929 55817 0.338 1.786<br />

Sagar 185644 1.979 64511 0.385 1.943<br />

Patharprotima 288394 1.989 100216 0.439 2.088<br />

Tamluk<br />

Sub Division<br />

Tamluk 204422 0.731 71036 0.466 0.939<br />

Sahid Matangini 176307 0.794 61266 0.446 0.974<br />

Panskura-I 298139 1.033 103603 0.519 1.312<br />

Panskura-II 256882 0.663 89266 0.280 0.658<br />

Moyna 196502 1.233 68284 0.533 1.541<br />

N<strong>and</strong>akumar 229462 0.958 79738 0.423 1.096<br />

N<strong>and</strong>igram-III 159914 1.355 55570 0.619 1.825<br />

Haldia<br />

Sub Division<br />

Mahisadal 182191 0.825 63311 0.399 0.941<br />

N<strong>and</strong>igram-I 174691 1.542 60705 0.583 1.961<br />

N<strong>and</strong>igram-II 104637 1.573 36361 0.261 1.327<br />

Sutahata 106338 0.000 36952 0.457 0.229<br />

Egra<br />

Sub Division<br />

Patashpur-I 151609 1.798 52684 0.611 2.303<br />

Patashpur-II 150551 1.763 52316 0.903 2.926<br />

Bhagwanpur-I 198898 1.549 69117 0.421 1.638<br />

Egra-I 145054 1.739 50406 0.701 2.438<br />

Egra-II 156431 1.513 54359 0.589 1.943<br />

Contai<br />

Sub Division<br />

Khejuri -I 114643 1.563 39838 0.455 1.720<br />

Khejuri-II 117438 1.715 40809 0.826 2.687<br />

Bhagwanpur-II 167551 1.590 58223 0.494 1.829<br />

Ramnagar-I 145413 0.921 50531 0.641 1.372<br />

Ramnagar-II 137369 1.312 47735 0.441 1.454<br />

Contai-I 151706 1.272 52717 0.396 1.337<br />

Contai-II 153065 1.403 53190 0.590 1.824<br />

Contai-III 137349 1.514 47728 0.289 1.340


Chapter Six<br />

Mitigation Strategies <strong>and</strong> Proposed Measures for the<br />

Districts<br />

6.1. General<br />

The discussions in Chapter 2 lead us to propose the following measures for protecting the lives of the<br />

people in the countryside that are prone to cyclonic hazards.<br />

CHAPTER 6<br />

• Strengthening of existing embankments to protect the enclosed l<strong>and</strong> from inundation <strong>and</strong> salt<br />

water intrusion.<br />

• Protection of riverbank in the inhabited isl<strong>and</strong>s of Sundarbans from eroding away due to<br />

strong river current or wave dash.<br />

• Protection of sea beach of the Medinipur coastal tracts from eroding away due to wave dash<br />

caused by storm surges.<br />

• Regeneration of mangrove in river side of the embankments, if possible, in order to protect<br />

them from the direct fury of storm surges.<br />

• Possible shelter belt plantations in the Medinipur coastal tracts for protecting the beach from<br />

degrading due to natural hazards related to cyclones.<br />

• Possible locations of cyclone shelters to provide refuge to the people of the most vulnerable<br />

zones.<br />

• Possible missing road links that may be constructed to connect vulnerable regions to safer<br />

locations.<br />

Each of these points has been elaborated in the following sections of this chapter.<br />

6.2. Embankments<br />

Kanjilal (2006) has provided a detailed description of the condition of the condition of the<br />

embankments today. The following excerpt has been selected from this reference, with the<br />

permission of the author.


6.2<br />

From a hydrological point of view the isl<strong>and</strong>s of the Sundarban, presently under cultivation, should be<br />

looked at as "polders" because the water levels of the surrounding river sections are periodically<br />

higher than the field levels.<br />

Polders require man-made embankments to prevent flooding. The river water in the Sundarban is<br />

saline throughout the year <strong>and</strong> consequently the damage to the crops of the inundated areas is<br />

severe.<br />

The embankments to be constructed, rehabilitated <strong>and</strong> maintained should meet two criteria: they<br />

need to be high enough to prevent overflow <strong>and</strong> they need to be strong enough to prevent bursts <strong>and</strong><br />

other forms of damage.<br />

These criteria have their effects on the following issues which are related to the construction <strong>and</strong> the<br />

maintenance of the embankment:<br />

1. The typical cross-section,<br />

2. The alignment of the embankment <strong>and</strong> the importance of the “berm” situated between the<br />

river <strong>and</strong> the embankment,<br />

3. The quality of the construction material,<br />

4. The method of construction,<br />

5. Measures to protect the slope of the embankment<br />

6.2.1. Typical Cross-Section<br />

The cross-section of an embankment is determined by: the field level of the strip of l<strong>and</strong> where the<br />

embankment is built or needs to be built, the required level of the crest of the embankment, the width<br />

of this crest <strong>and</strong> the gradients of the inner <strong>and</strong> the outer slopes.<br />

In their proposal to improve <strong>and</strong> repair the flood protection works in the North-Eastern part of the<br />

Sundarban, the Irrigation Department stated that the isl<strong>and</strong>s in this area are flat <strong>and</strong> that the field<br />

level is +1.80 GTS.<br />

Although at macro level the cultivated areas of the isl<strong>and</strong>s are relatively flat, observations reveal that<br />

at micro level there are significant differences in level. These observations are confirmed by farmers,<br />

who moreover reported that according to their experience some isl<strong>and</strong>s are lower than others. This<br />

topography is characteristic for l<strong>and</strong> reclaimed in tidal area.


6.3<br />

Beside these differences in level because of the different patterns of sedimentation in the past <strong>and</strong><br />

the differences in subsidence, the population has excavated ponds <strong>and</strong> canals; sometimes for the<br />

purpose of water conservation or the improvement of the drainage system but often these excavation<br />

are the so-called "borrow areas" for the construction of the embankments or for rising parts of their<br />

home yards to build their houses on. Many of these ponds <strong>and</strong> other excavation are situated close to<br />

the embankment. This means that in case the embankment needs to be shifted, the sub-base of the<br />

dike at more than one location will be significantly lower than field level <strong>and</strong> consequently the fill<br />

needs to be higher. The required crest level needs to be related to some decisive high water level<br />

with a statistical chance to be reached or exceeded once in a specific number of years.<br />

For industrialised areas in Europe the decisive high water level has a chance of occurrence of once<br />

in 3000 years, in agricultural areas in developing countries this can be once in 10 or 15 years. The<br />

choice what should be the decisive high water level is to a very large extent a matter of policy, taking<br />

in consideration the costs of the protection works on the one h<strong>and</strong> <strong>and</strong> the potential damage caused<br />

by incidental flooding on the other h<strong>and</strong>.<br />

The Irrigation Department adopted a design crest level of 4.80+GTS. Ac-cording to information<br />

collected from the office of the Irrigation Department in Gosaba, there are no Benchmarks on the<br />

isl<strong>and</strong>s of their sub-division of which the levels has been established in relation to the Reference<br />

Level of the Sundarban.<br />

For that reason the actual levels of the crests of the existing embankments <strong>and</strong> those of the<br />

embankments that need to be reconstructed cannot be established properly. Reliable <strong>and</strong> long<br />

ranging data about water levels in the rivers are also not available. Because of this a discussion<br />

about whether a crest level of 4.80+ is sufficient is not relevant. According to information from the<br />

inhabitants the crest levels of the undamaged embankments are considered to be high enough.<br />

According to the Irrigation Department, the st<strong>and</strong>ard width of the crest is 1.50 m, in cases no roads<br />

with a pavement of bricks need to be built over that section of the embankment.<br />

From a technical point of view this width is certainly safe enough <strong>and</strong> for practical reasons the width<br />

is well chosen as it facilitates transportation along the alignment of the embankment of people <strong>and</strong><br />

material, which might be an advantage in cases of a calamity. At many locations <strong>and</strong> over considerable<br />

lengths however the actual width of the crests is not according to this st<strong>and</strong>ard. This is not<br />

because the embankments have been damaged by wave-dash or have been affected by slips<br />

initiated by bank failures including parts of the embankment, but simply because they are not<br />

constructed according to the st<strong>and</strong>ard specifications; for whatever reason.


6.4<br />

The st<strong>and</strong>ard gradient of the outer slope <strong>and</strong> the inner slope is according to the specifications of the<br />

Irrigation Department: 2 (horizontal): 1 (vertical). For the riverside slope this gradient is most likely a<br />

practical compromise. Steeper gradients reduce the wave run-up but make the slopes more vulnerable<br />

to erosion by wave-dash. Slopes of 2:1 are usually stable if they are properly constructed.<br />

The soils of the embankments at their l<strong>and</strong>sides will gradually become less saline <strong>and</strong> grass will start<br />

to grow on the inner slopes, "promoting" these slopes to grazing grounds for cattle <strong>and</strong> goats. If the<br />

gradient is too steep the cattle will damage the slopes while grazing as can be noticed at many<br />

locations. At a less steep angle the hoofs of the animals act as efficient "compactors", improving the<br />

quality of the embankment, which is important even if it only happens at the inner slope. The gradient<br />

of the l<strong>and</strong>side slope should therefore not be steeper than 2:1 <strong>and</strong> preferably less. After all, the zone<br />

of the inner slope is reasonably productive when used as grazing ground.<br />

In addition to the remarks made about the actual width of the embankments, which have been<br />

visited, needs to be stated that the gradients of the side slopes of nearly all the inspected<br />

embankments are steeper than required by the specifications of the Department. At the riverside this<br />

was sometimes the result of wave-dash which was not yet repaired, but over considerable lengths<br />

the embankments have been constructed with side slopes of 1:1 or even steeper. For all these<br />

reasons the earthen embankments are less stable than they should be <strong>and</strong> could be.<br />

6.2.2. Alignment <strong>and</strong> Berm<br />

Like any other structure made by mankind, an embankment needs to be built on a stable base; if the<br />

foundation fails the structure will be damaged, how solid the structure might have been constructed.<br />

If the base of an embankment is weakened, whatever might be the cause, reinforcement of the<br />

embankment itself will be ineffective.<br />

To guarantee this solid base, the embankment needs to be constructed at a safe distance from the<br />

edge of the river especially if the river banks are not stable <strong>and</strong> show cavings <strong>and</strong> slides.<br />

The zone between the embankment <strong>and</strong> the river, usually indicated as the “outer berm”, is important<br />

for a number of reasons:<br />

• to guarantee the embankment a proper foundation,<br />

• to reduce the velocity of the water flowing close to the embankment during the periods when<br />

the water levels are high,


6.5<br />

• to reduce the destructive force of the waves developed during periods of strong wind,<br />

especially along the Southern banks of the wider rivers,<br />

• to create a zone to plant or replant mangroves or other vegetation tolerating saline water, in<br />

order to increase the reduction of the forces of currents <strong>and</strong> waves,<br />

• to reduce the chance of occurrence of bank failures by lowering the pressure on the edge of<br />

the river; this pressure can be reduced even more by lowering the level of the berm but the<br />

berm level should remain high enough to be planted or replanted successfully with<br />

mangrove.<br />

In many coastal areas in the tropics <strong>and</strong> also in the Sunderban proof can be found that a zone of<br />

rough vegetation like mangroves is a very effective <strong>and</strong> very economic protection against wave dash<br />

during storms. In periods the zone is submerged the hydraulic roughness is so high that the velocity<br />

of the flow over the zone <strong>and</strong> through the mangroves is practically zero. Consequently all the<br />

sediment in the water will settle, even the suspended clays.<br />

The width of the berm which is required to guarantee a solid base for the embankment depends on<br />

the depth <strong>and</strong> the shape of the river. Often channels are eroded in the bottom of the rivers, due to the<br />

currents. In the outer curves of the river these channels are close to the river banks endangering the<br />

stability of these banks. To prevent that a possible bank failure includes part of the embankment, the<br />

gradient of the imaginary line between the toe of the outer slope of the embankment to the toe of the<br />

river bank should be equal or flatter than 3(horizontal): 1 (vertical).<br />

Another criterion for the required width of the berm is that the zone (re)planted with mangrove should<br />

be at least 10 meters. Considering the criteria as discussed above many of the embankments in the<br />

Sundarban are too close to the rivers <strong>and</strong> because of this their stability is at least doubtful.<br />

The Forest Department is implementing a programme of replanting mangroves along the rivers in the<br />

estuary. This programme needs to be encouraged. Some coordination between the Forest<br />

Department <strong>and</strong> the Irrigation Department in order to select the areas where this reforestation is<br />

required most might be useful.<br />

Within the framework of measures to prevent or to reduce the damage of the embankments attention<br />

need to be given to the many boats in the area. The owners drag these boats on the outer slope of<br />

the embankments <strong>and</strong> sometimes damaging the vegetation on the berm. It might be advisable to<br />

investigate the possibilities to allocate zones for each village where this can be allowed <strong>and</strong> other<br />

zones where these practices are prohibited.


6.6<br />

6.2.3. Construction Material<br />

The embankments in the Sundarban are built without using any heavy earth moving equipment.<br />

Transport from the borrow areas where the soils are excavated to the locations where the<br />

embankment is built or repaired is executed by labourers carrying buckets on their heads.<br />

Considering this system of transport <strong>and</strong> the expectation that the system will remain unchanged in<br />

the coming decade, the embankments have to be constructed with material found close by; at least<br />

the major part of their cross-section.<br />

At some locations excellent Clays or Silty Clays have been found, but at the majority of the soils are<br />

ranging from Fine S<strong>and</strong>y Loams to Silty Clay Loams; materials with less resistance against wavedash<br />

<strong>and</strong> scouring by current. Nevertheless these materials are suitable to be used for the construction<br />

of the embankments provided that they are taken from locations where these soils are<br />

sufficiently matured <strong>and</strong> properly consolidated. In practice however material to build or to repair the<br />

embankment is taken from the top layers of the berm between the river <strong>and</strong> the embankment or from<br />

the top soils of the adjacent rice fields, which cohesive qualities are strongly reduced by annually wet<br />

ploughing <strong>and</strong> puddling. These soils have to be qualified as mud or dried mud.<br />

Mud is a material with almost no cohesion <strong>and</strong> is less suitable to be used successfully for the<br />

construction of sustainable embankments. (The difference in quality of dried mud <strong>and</strong> matured loams<br />

can easily be demonstrated by putting a lump of each of the materials in separate buckets of water.<br />

After a couple of hours, even without stirring, there is nothing left from the lump of mud <strong>and</strong> on the<br />

bottom of the bucket is a layer of sediment. The lump of matured loam will show only small<br />

deformation.)<br />

The quality of an embankment largely depends on the proper choice of the material used for its<br />

construction. The difference in costs per unit length between an earthen embankment <strong>and</strong> an<br />

embankment of which the outer slope is protected by dry brick pitching is so large that the extra costs<br />

required to build the unprotected earthen bank of proper material are mostly more than justified.<br />

These better soils can often be found below the ploughing zone of the rice fields <strong>and</strong> in the<br />

embankments (or their remains) stability of which is no longer secured. The soils of the berms need<br />

to be examined carefully. Recent deposits should be avoided. If the soils of the outer berms are good<br />

enough to be used as construction material, the quantities should be taken from the zone closest to<br />

the edge of the river.


6.7<br />

6.2.4. Methods of Construction<br />

The specifications <strong>and</strong> guidelines for construction as they are formulated by the Irrigation Department<br />

are adequate. However there is a large discrepancy between the embankments as they are designed<br />

<strong>and</strong> as they are actually constructed. In order to achieve proper embankments quality <strong>and</strong> quality<br />

control needs to be improved.<br />

It is beyond the scope <strong>and</strong> the competence of this paper to suggest institutional measures to improve<br />

the supervision <strong>and</strong> the quality <strong>and</strong> quantity control but when the ultimate goal is to construct proper<br />

embankment these measures are bound to be taken.<br />

As no contractor likes to work at a loss the costs for the construction of the embankment most likely<br />

will increase when proper supervision <strong>and</strong> control will be implemented as the present unit prices are<br />

presumably too low to expect that the contractors are able to work according to the specifications<br />

<strong>and</strong> still make a reasonable profit.<br />

6.2.5 Protection of the Outer Slope<br />

The Irrigation Department has protected the outer slope of the embankments over many kilometers<br />

by dry brick pitching. The construction runs from the crest of the embankment till about 0.5m below<br />

low water level. As already stated earlier the construction is extremely expensive in comparison with<br />

the construction of an unprotected embankment. The cost of protected embankments are estimated<br />

by the Department at Rs. 3100/m, while the cost of the unprotected embankment is estimated at Rs.<br />

200/m. According to Kanjilal (2006), there is no need to provide brick pitching at such a costly rate to<br />

the river side slope of the embankment, but possibly reconstruct the embankments once it is<br />

breached at a much lesser cost.<br />

However, it is felt here that probably the brick pitching becomes unstable due to wave dash because<br />

each brick by itself is too weak to resist the force of the wave dash. On the other h<strong>and</strong>, it is<br />

suggested that a cluster of bricks may be made by available local materials to increase the total<br />

weight <strong>and</strong> possible resist the force of the wave dash better.<br />

6.2.6. Retiring of embankments<br />

In certain critical locations, as for example at the shores of sea facing isl<strong>and</strong>s or at the concave<br />

bends of the tidal creeks, it is inferred that the embankments would not be stable even after<br />

strengthening. The best option in this case would be to retire or retreat the embankment by a few<br />

tens of meters <strong>and</strong> provide mangrove plantation, if possible. According to Kanjilal (2006), the second


6.8<br />

embankment shall have to be built with the proper sail as is technically necessary, or rather the best<br />

option would be to excavate out the existing embankment, since the material has withstood the test<br />

of time. The distance of retreat has to be according to a possible stable slope, say at least a<br />

minimum of 3 Horizontal : 1 Vertical, as shown in Figure 6-1.<br />

Figure 6 -1. Recommended minimum distance between the riverbank <strong>and</strong> embankment<br />

6.2.7. Sluice gates<br />

The sluices are constructed with a sliding gate <strong>and</strong> a flap gate. The sliding gate is necessary to<br />

prevent outflow of water which is useful for the community of the isl<strong>and</strong>. For this, the sliding gate can<br />

be <strong>and</strong> should be in a closed position except at moments excess water needs to be drained. If the<br />

sliding gate is properly constructed <strong>and</strong> properly operated, it also can prevent the inflow of saline<br />

water during high tide. The flap gate prevents inflow of water when the sliding gate is not closed on<br />

time or is left open.<br />

The sliding gate is a necessity; the flap is a safety precaution which reduces the discharge capacity<br />

significantly. In theory there are two options to increase the discharge capacity of the sluices without<br />

enlarging the diameter of the culverts, which means the construction of a new structure:<br />

• To remove the flap gate <strong>and</strong> to rely completely on a proper operation of the sliding gates. In<br />

many countries this option has been chosen in cases that the storage capacity was relatively<br />

large. In periods of heavy rains when spilling is required during series of low tides <strong>and</strong><br />

consequently the sliding gate needs to be opened <strong>and</strong> closed with every tide an extra gate<br />

keeper needs to be called on duty.<br />

• To reduce the negative effect of the flap gate by reducing the weight that pushes on the jet of<br />

water leaving the culvert <strong>and</strong> which diminishes the discharge capacity of the sluice. This can<br />

be achieved by re-construction of the flap gate structure is such a way that a counter weight


6.9<br />

is attached to the structure. The flap is as strong as it was before the reconstruction, but the<br />

resulting weights much less. Flap gates with counter weights are operational with success in<br />

many countries. While reconstructing the flap gates the distance between the center of the<br />

culvert <strong>and</strong> the hinge of the flap gate structure should be enlarged.<br />

With the information presently available it is not possible to estimate whether improvement of the<br />

discharge capacity of the existing sluices is still required when the other measures have been taken.<br />

It is also difficult to recommend which of the options should be chosen when some improvement is<br />

required. The first option requires fewer investments but requires an alert <strong>org</strong>anization in charge of<br />

operation <strong>and</strong> maintenance of the water control system.<br />

6.2.8. Recommendations regarding construction of embankments<br />

In the Sunderban region, it is observed that almost all the isl<strong>and</strong>s that have been reclaimed for<br />

habitation over the years (as explained in Chapter 2) are bounded by circuit embankments in order to<br />

protect the people <strong>and</strong> property settled on the isl<strong>and</strong>s. In fact, they protected l<strong>and</strong>s represent more<br />

like the polders of Netherl<strong>and</strong>s. The original embankments (dykes) were constructed without any<br />

proper engineering guidelines <strong>and</strong> thus the slopes on the riverside <strong>and</strong> on the l<strong>and</strong>side, embankment<br />

crest width <strong>and</strong> its elevation were all decided upon repeated human experiences. However, rising<br />

waters of the rivers cause failures of these embankments due to overtopping, sloughing, or slip<br />

failure due to erosion of the base due to river current at its base if it is too close to the river.<br />

Specific recommendation is, therefore, needed based upon certain design considerations. Basic<br />

engineering provides guidelines for the crest width, bank slopes, <strong>and</strong> material that need to be used<br />

for construction of these embankments. However, the crest width should be decided upon a chosen<br />

maximum rise of the river (or ocean) water that is likely to overtop the embankments. Thus, it is<br />

necessary to know the expected rise of water levels based on previously recorded data. This<br />

requires information about the recurrence interval or return period of the occurrence of sea level rise.<br />

Naturally, this depends upon the repetition of sea level rise due to cyclonic storms.<br />

In this regard, the Bureau of Meteorology Research Centre, Australia, in its Global Guide to Tropical<br />

<strong>Cyclone</strong> Forecasting, (Chapter 7: Warning Strategies, Section 7.5 Hazard, Vulnerability And Risk<br />

Assessment) mentions about a study of return period of tropical cyclone based on a study of 95 year<br />

data by Jayanthi <strong>and</strong> Sen Sharma in 1988. The data for West Bengal coastline from the study is<br />

given as under:


6.10<br />

Recurrence interval (in years)<br />

10 25 50 100 200<br />

Maximum wind speed (knots) 90 105 116 125 135<br />

<strong>Storm</strong> surge height (m) 4.5 6.3 7.8 9.2 10.9<br />

A reasonable recurrence interval for assessing the crest of embankments facing the sea may be<br />

considered as 50 years. Thus, adding a freeboard, one may say that an embankment crest elevation<br />

of 8m above Mean Sea Level may be thought of as safely withst<strong>and</strong>ing the overtopping of surges<br />

that is likely to occur with a recurrence of 50 years.<br />

As for the embankments along the rivers, channels <strong>and</strong> creeks, the rise of the water levels as a<br />

consequence of a rise of the sea water level due to cyclonic storm surges has to be decided upon<br />

the river hydrodynamics. Considering a rise of 7.8m of the sea (with a recurrence interval of 50<br />

years) causes rise of water levels that is much less as the dynamic nature of the surge is dampened<br />

as it enters the channels <strong>and</strong> creeks.<br />

From the note of Superintending Engineer, eastern Circle, I&W Department, Government of West<br />

Bengal that was prepared in December 2005, titled “Scheme for the revetment works of the<br />

Embankments of Sundarban Areas in the districts of North & South 24-Parganas”, it is necessary to<br />

provide immediate revetment protection to about 235 kms critical length of embankments in the<br />

Sundarbans out of a total of about 3500 kms. The regions that require immediate attention include:<br />

(a) Sea facing dyke – 17 km, (b) Embankments facing major rivers – 139 km, <strong>and</strong> (c) Embankments<br />

facing medium rivers – 79 km. It is estimated that the total cost estimate is around Rs. 467.82<br />

Crores. Further, 91 km length out of 225 km length of embankments already protected with<br />

revetment under the scheme “Urgent Development Works of Sundarban” need a thorough<br />

maintenance, which requires a sum of Rs.72.18 Crore. Thus, a total sum of Rs.540.00 Crore is<br />

required in the first phase for protection of the most critical of the Sundarban embankments. The<br />

technical <strong>and</strong> financial details of the proposal are presented below.<br />

Embankment design<br />

(a) Major rivers to armour the riverside slopes (3:1 to 4:1) of the embankments by providing 32.5<br />

cm thick dry brick pitching / 25 cm thick brick block pitching over a layer of 12.5 cm to 15 cm thick<br />

jhama khoa filter with provision of a brick sausage toe wall.


6.11<br />

(b) Medium rivers to armour the riverside slope (3:1) of embankments by providing 20 cm thick<br />

dry brick pitching over a layer of 10.0 cm to 12.5 cm thick jhama khoa filter with provision of brick<br />

sausage toe wall.<br />

(c) Embankments facing Bay of Bengal to armour riverside slope (5:1) by providing (2.0 m x 1.0<br />

m x 0.3 m) C.C. Block over 15 cm thick layer of jhama khoa filter with provision of brick sausage toe<br />

wall.<br />

Data<br />

(a) For Embankments along Major & Medium Rivers<br />

(i) Average Ground Level = R.L. 2.00 m (GTS)<br />

(ii) Highest High Tide Level = R.L. 4.50 m (GTS) (considering flood season of 1976)<br />

(iii) Average High Tide Level = R.L. 3.80 m (GTS) to 3.00 m (GTS)<br />

(iv) Lowest Low Tide Level = R.L. (-) 1.80 m (GTS) to (-) 1.20 m (GTS)<br />

(b) For Embankments facing Bay of Bengal<br />

(i) Average Ground Level = R.L. 2.00 m (GTS)<br />

(ii) Highest High Tide Level = R.L. (+) 5.40 m (GTS)<br />

(iii) Average High Tide Level = R.L. (+) 4.50 m (GTS)<br />

(iv) Lowest Low Tide Level = R.L. (-) 2.00 m (GTS)<br />

Crest Level<br />

(a)<br />

For Major & Medium Rivers<br />

From the scheme "Urgent Development Works of Sundarban", the height of wave of major rivers has<br />

been taken as 1.60 m. Allowing free board of 0.6 m above wave, the actual free board measured<br />

from H.H.T.L. comes to (1.60 + 0.60) or 2.20 m.<br />

Hence the crest level of the embankment along major rivers = 4.50 m + 2.20 m = 6.70 m<br />

However, for major rivers under Kakdwip Irrigation Division the crest level has been fixed at 7.10 m<br />

(considering the locations of the embankments which are mostly nearer to Bay of Bengal).<br />

The crest level for all the medium rivers has been fixed at 6.40 m (considering the free board above<br />

wave as 0.3 m).<br />

(b)<br />

For Embankments facing Bay of Bengal<br />

As per guidelines of the "National Coastal Area Protection Project" (NCAPP), the height of wave has<br />

been taken as 2.20 m. Allowing free board of 0.60 m above wave, the actual free board measured<br />

from H.H.T.L. comes to (2.20 + 0.60) or 2.80 m.


6.12<br />

Hence, the crest level of the embankment facing of Bay of Bengal or the sea dyke = 5.40 m + 2.80<br />

m = 8.20 m<br />

Crest Width<br />

(a)<br />

For Major & Medium Rivers<br />

Based on "Urgent Development Works of Sundarban" the crest width of the proposed revetted<br />

embankment has been chosen as 3.00 m instead of 1.50 m (for only earthen embankment).<br />

(b)<br />

For Embankments facing Bay of Bengal<br />

As per the provision made in the "National Coastal Area Protection" Scheme, the crest width has<br />

been taken as 5.00 m.<br />

Riverside & Countryside Slope<br />

(a) For Major & Medium Rivers<br />

As per "Urgent Development of Sundarban Works Scheme, For major rivers the R.S. Slope is 4:1 For<br />

medium rivers the R.S. Slope is 3:1<br />

However, in this scheme for major rivers the R.S. Slope has been taken as 3:1 barring some<br />

embankments near Bay of Bengal where 4:1 slope has been adopted.<br />

In all the above cases, the countryside slope has been provided as 2:1.<br />

(b)<br />

For Embankments facing Bay of Bengal<br />

As per suggestion made in the "National Coastal Area Protection " Scheme, the riverside slope<br />

should be 6:1. However, for all practical purposes the same has been kept in this scheme as 5:1.<br />

Of course, the countryside slope will be 2:1 as usual.<br />

Revetment on Riverside Slope<br />

(a) For Major & Medium Rivers<br />

In all the embankments along major rivers the revetment work has been proposed to be done by 32.5<br />

cm thick dry brick pitching / 25 Cm thick brick pitching to be laid over 12.5 cm to 15.0 cm thick jhama<br />

khoa filter as has been provisioned in "Urgent Development Works of Sundarban Scheme executed<br />

earlier <strong>and</strong> the function of which has proved satisfactory.


6.13<br />

Likewise, in all the embankments along medium rivers the revetment is proposed to be done by 20<br />

cm thick dry brick pitching to be laid over 10 cm thick jhama khoa filter.<br />

In all the above cases, the revetment will be taken 1.50 m to 2.00 m below ground level with<br />

provision of brick sausage toe wall of size 0.60 m x 0.60 m at the end,<br />

(b)<br />

For Embankments facing Bay of Bengal<br />

In this case, the revetment is proposed to be made by laying cast-in-situ cement concrete (1:2:4)<br />

block, each of size (2.0 m x 1.0 m x 0.30 m) over 15 cm thick jhama khoa filter.<br />

The above cement concrete block pitching in R.S. slope will be extended to 2.0 m below ground level<br />

with a provision of brick sausage toe wall of size 0.60 m x 0.60 m at the end.<br />

Above provision has been made as per recommendation of the Technical Committee of Flood<br />

Control Board, West Bengal.<br />

Cross Walls on Slope<br />

Cross walls made of brickwork of width 0.25 m will be provided across the R.S. slope revetment @<br />

15.0 m C/C for making compartments of revetment which will facilitate quick <strong>and</strong> smooth<br />

maintenance to the pitching work in future. Moreover, it will increase the stability of the revetment as<br />

a whole.<br />

Crest Top Wall<br />

Crest top wall made of brickwork of width 0.25 m will be provided along the riverside face of the crest<br />

edge to protect the earthen crest from the fury of major river wave.<br />

The crest top wall of embankment facing Bay of Bengal will be made by 0.60 m wide brickwork with<br />

corbelling.<br />

Typical cross sections of different embankment sections as proposed by the Irrigation <strong>and</strong><br />

Waterways Department are provided in Figure 6-2 to 6-10.


6.14<br />

Figure 6 -2<br />

Figure 6 -3<br />

Figure 6 -4


6.15<br />

Figure 6 -5<br />

Figure 6 -6<br />

Figure 6 -7


6.16<br />

Figure 6 -8<br />

Figure 6 -9<br />

Figure 6 -10


6.17<br />

Benefit cost ratio<br />

Area benefited due to prevention of saline inundation:<br />

362.75 Sq.km under Joynagar Irrigation Division<br />

286.50 Sq.km under Kakdwip Irrigation Division<br />

180.00 Sq.km under Basirhat Irrigation Division<br />

Total<br />

(A)<br />

= 829.25 Sq.krn = 829.25 x 100 Ha = 82,925 Ha<br />

Benefit due to Crop production<br />

Culturable or Cropped Area<br />

= 80% of 82925 Ha = 66,340 Ha<br />

Average Crop production as per Census Report = 25 Quintal per Ha per year<br />

Paddy Crop = 66,340 Ha x 25<br />

= 16,58,500 Quintal<br />

Straw =<br />

1.5 times of 16,58,500 Quintal<br />

= 24,87,750 Quintal<br />

Cost of Paddy =<br />

16,58,500 Qtl x Rs.600.00 per Qtl<br />

= Rs. 99,51,00,000.00<br />

Cost of Straw = 24,87,750 Qtl x Rs.175.00 per Qtl<br />

= Rs. 43,53,56,250.00<br />

Total Cost of Production = Rs. 99,51,00,000.00 + Rs. 43,53,56,250.00<br />

= Rs. 143,04,56,250.00<br />

= Rs.14,304.56 Lakh per year<br />

(B)<br />

Value of damages to embankments due to Breach, Wave Wash etc.<br />

In the year 2001-02<br />

= Rs. 952.57 Lakh<br />

2002-03 = Rs. 790.32 Lakh<br />

2003-04 = Rs. 755.94 Lakh<br />

2004-05 = Rs. 1025.00 Lakh<br />

2005-06 = Rs. 858.00 Lakh


6.18<br />

Total<br />

= Rs. 4381.83 Lakh in 5 years<br />

So average value of damages to embankments per year = Rs. 4381.83 Lakh ÷ 5<br />

= Rs. 876.37 Lakh<br />

Loss due to damage of private homes, cattle, livestock, relief measures Etc. being not readily<br />

available has not been considered in this statement.<br />

Total Benefit per year = (A) + (B)<br />

= Rs. 14,304.56 Lakh + Rs. 876.37 Lakh<br />

= Rs. 15,180.93 Lakh<br />

(C) Annual Expenditure<br />

Capital outlay of the scheme = Rs. 54,000.00 Lakh<br />

Considering annual operation <strong>and</strong> maintenance cost @ 17% of the<br />

Capital Outlay, yearly expenditure comes to Rs. 9,180.00 Lakh<br />

(D) Benefit Cost Ratio comes to = Rs. 15,180.93 Lakh ÷ Rs. 9,180.00 Lakh<br />

= 1.65 : 1


6.19<br />

Location <strong>and</strong> cost of proposed new embankments with revetment under Basirhat<br />

Irrigation Division<br />

Block Facing river Mouza<br />

Length (m)<br />

Cost<br />

(Rupees)<br />

Hingalganj Raimongal Ramapur 2000 40400000<br />

Madhabkati 3200 64640000<br />

Jogeshganj 1200 24240000<br />

Hemnagar 2200 44440000<br />

Perghumti 1800 36360000<br />

Hingalganj Kalindi Hingalganj 800 14800000<br />

Singerkati 600 11100000<br />

Chhoto Sahebkhali 1200 22200000<br />

Sahebkhali 1000 18500000<br />

Charalkhali 1000 18500000<br />

Sreedharkati 500 9250000<br />

Malakanghumti 3300 61050000<br />

Samsharnagar 3300 61050000<br />

S<strong>and</strong>eshkhali - II Bara - Kalagachhi Tushkhali 1250 23125000<br />

Atapur 3000 55500000<br />

Raimongal Monipur 3000 55500000<br />

Hingalganj Sahebkhali Pukuria 700 8400000<br />

-Do- -Do- 1 No. Amberia 500 6000000<br />

-Do- -Do- Swarupkati 1000 12000000<br />

-Do- -Do- Lebukhali 700 8400000<br />

-Do- -Do- Choto Sahebkhali 800 9600000<br />

-Do- -Do- Putia Mathbari 200 2400000<br />

-Do- -Do- Khejurberia 600 7200000<br />

-Do- Dansa Durgapur 600 7200000<br />

-Do- -Do- Dhanikhali 500 6000000<br />

-Do- -Do- Kumirmari 700 8400000<br />

-Do- -Do- Rupamari 500 6000000<br />

-Do- -Do- Banstala 1200 14400000<br />

S<strong>and</strong>eshkhali -II Chotto Kalagachi VangaTushkhali 200 2400000<br />

-Do- -Do- Bermajur 300 3600000<br />

-Do- -Do- Jhupkhali 400 4800000<br />

-Do- -Do- Dhamakhali 1200 14400000<br />

-Do- -Do- Tushkhali 8 Number 750 9000000<br />

-Do- -Do- Dwarikjungle 3 No. 800 9600000<br />

-Do- -Do- Dwarikjungle 7 Number 300 3600000<br />

-Do- -Do- Dwarikjungle 500 6000000<br />

-Do- Ghatihara 5 No. Dwarikjungle 1000 12000000<br />

-Do- Rampur Rampur Jeliakhali 2000 24000000<br />

-Do- -Do- (East & West) Bhanga 2000 24000000<br />

-Do- Tushkhali Tushkhli 1400 16800000<br />

-Do- -Do- Bara Tushkhali 1000 12000000<br />

S<strong>and</strong>eshkhali -1 Benti Ghoshpur 500 6000000<br />

-Do- -Do- Kalinagar 2000 24000000<br />

-Do- Ghatihara Netyaberia 500 6000000<br />

-Do- -Do- Bholadhaii (W) 1000 12000000<br />

-Do- Bidyadhari Hatgachi 2000 24000000<br />

-Do- -Do- Kalinagar 400 4800000<br />

-Do- -Do- Khariahat 800 9600000<br />

Type of work<br />

Type II B<br />

250mm thick<br />

Brick Block<br />

Pitching in<br />

4:1 Slope<br />

Type II A<br />

325mm thick<br />

Dry Brick<br />

Pitching in<br />

3:1 Slope<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

Type - I<br />

200mm thick<br />

Dry Brick<br />

Pitching in<br />

3:1 Slope<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-


6.20<br />

-Do- Dansa Hasnabad 1000 12000000<br />

-Do- -Do- Ghatihara 2000 24000000<br />

-Do- -Do- Bara Sehara 1500 18000000<br />

-Do- -Do- Bholakhaii (E) 1500 18000000<br />

Minakhan Bidyadhari Chaital 1500 18000000<br />

-Do- -Do- Mohanpur 800 9600000<br />

-Do- -Do- Bachara 600 7200000<br />

Hasnabad Kantakhali Kharampur 1000 12000000<br />

-Do- Ichamati Sodepur 500 6000000<br />

-Do- -Do- Taki 1500 18000000<br />

Basurhat-1 Ichamati Panitor 2000 24000000<br />

-Do- -Do- Bagundi 1500 18000000<br />

-Do- -Do- Dipmedia 1000 12000000<br />

-Do- -Do- Chowrah 500 6000000<br />

-Do- -Do- Tapa Mirzapur 750 9000000<br />

-Do- - Do- Harishpur 500 6000000<br />

Swarupnagar Ichamati Bajitpur 750 9000000<br />

-Do- -Do- Ramch<strong>and</strong>rapur 1000 12000000<br />

-Do- -Do- Sajarajpur 750 9000000<br />

-Do- ~Do- Banglani 1000 12000000<br />

Baduria Ichhamati G<strong>and</strong>harbapur 1000 12000000<br />

-Do- -Do- Nayabastia 650 7800000<br />

-Do- -Do- Raimonitala 1000 12000000<br />

-Do- -Do- Fatullyapur 1000 12000000<br />

-Do- -Do- Kulia 500 6000000<br />

-Do- -Do- Fulardanga 500 6000000<br />

-Do- -Do- Khargachi 500 6000000<br />

Total 83200 1206855000<br />

Type-I: 200mm thick dry brick pitching in 3:1 slope. Estimated cost around Rs. 18,500 per<br />

meter.<br />

Type of Work-IIA: 325mm thick dry brick pitching in 3:1 slope. Estimated cost around Rs.<br />

18,500 per meter.<br />

Type of Work-IIB: 250mm thick brick block pitching in 4:1 slope. Estimated cost around<br />

Rs. 20,200 per meter.<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

-do-<br />

Location <strong>and</strong> cost of proposed repair to embankments with revetment under Basirhat<br />

Irrigation Division<br />

Block Facing river Mouza Length (m) Cost<br />

(Rupees)<br />

Hingalganj Kalindi Sahebkhali 900 8085600<br />

Charalkhali 800 7187200<br />

Kanaikati 500 4492000<br />

Malekanghumti 800 7187200<br />

S<strong>and</strong>eshkhali – II Raimangal Monipur 1000 8984000<br />

Basirhat – I Ichhamati Itenda 500 2704000<br />

Akherpur 1000 5408000<br />

Bagundi 400 2163200<br />

Basirhat 1000 5408000<br />

Tapamirzapur 1000 5408000<br />

Type of work<br />

325 mm<br />

Dry Brick<br />

Pitching<br />

200 mm<br />

Dry Brick<br />

Pitching


6.21<br />

Swaraupnagar Swaraupnagar 100 540800<br />

Tentulia 100 540800<br />

Baduria Ramch<strong>and</strong>rapur 200 1081600<br />

Kulia 200 1081600<br />

Kabilpur 200 1081600<br />

Punra 300 1622400<br />

Media 500 2704000<br />

Sarfarajpur 1000 5408000<br />

Taki 500 2704000<br />

Hasnabad Dansa Sulkuni Abad 700 3785600<br />

Ichhapur 1000 5408000<br />

Bedemari 800 4326400<br />

Katakhali Bhowanipur 1000 5408000<br />

S<strong>and</strong>eshkhali-I Bidyadhari Hatgachhi 2000 10816000<br />

Kanmari 400 2163200<br />

Chaital 1500 8112000<br />

Mohanpur 800 4326400<br />

Bachra 600 3244800<br />

Kalinagar 1600 8652800<br />

S<strong>and</strong>eshkhali-II Chhotokalakagchhi 3 number Dwarikjungle 1000 5408000<br />

Dhamakhali 1000 5408000<br />

Rampur 1500 8112000<br />

Bermajur 1300 7030400<br />

Bani-Boalia Jeliakhali 2500 13520000<br />

Rampur Jeliakhali, Bhanga Tushkhali 1700 9193600<br />

Boalia Durgamondap 1000 5408000<br />

Bali Korakati 500 2704000<br />

Chhoto Kalagachhi Bhanga Tushkhali 500 2704000<br />

32400 189523200<br />

Estimated cost of repairs to existing embankment by providing pitching of 325mm of dry brick:<br />

Rs. 8984 per metre length.<br />

Estimated cost of repairs to existing embankment by providing pitching of 200mm of dry brick:<br />

Rs. 5408 per metre length.<br />

Location <strong>and</strong> cost of proposed new embankments with revetment under Joynagar<br />

Irrigation Division<br />

Block Facing river Mouza Length<br />

Cost Type of work<br />

(m)<br />

Roymongal Gosaba Kumirmari 300 5550000 Type IIA<br />

Gomor Gosaba Amlamethi 300 5550000 -do-<br />

Bidya Gosaba Mathurakh<strong>and</strong>a 300 5550000 -do-<br />

Roymongal Gosaba Kumirmari 350 6475000 -do-<br />

Roymongal Gosaba Kumirmari 650 12025000 -do-<br />

Gomor Gosaba Amlamethi 1350 24975000 -do-<br />

Bidya Gosaba Mathurakh<strong>and</strong>a 300 5550000 -do-<br />

Gomor Gosaba Satjelia 900 16650000 -do-<br />

Bidya Gosaba Radhanagar 500 9250000 -do-<br />

Kartal Gosaba Ch<strong>and</strong>ipur 1130 20905000 -do-


6.22<br />

Roymongal Gosaba Puinjali 800<br />

14800000<br />

-do-<br />

Gomor Gosaba Sonagaon 500 9250000 -do-<br />

Gomor Gosaba Rangabelia 1,000 18500000 -do-<br />

Puinjali Gosaba Kumirmari 700 12950000<br />

-do-<br />

Gomor Gosaba Amlamethi 500 9250000 -do-<br />

Bidya Gosaba Mathurakh<strong>and</strong>a 900 16650000 -do-<br />

Roymongal Gosaba Puinjali 1000 18500000 -do-<br />

Bagna Gosaba Kumirmari 1000 18500000 -do-<br />

Rangabelia Gang Gosaba Luxbagan 500 9250000 -do-<br />

Bidya Gosaba Taranagar 800 14800000 -do-<br />

Gomor Gosaba Pakhiralaya 1000 18500000 -do-<br />

Roymongal Gosaba Puinjali 1000 18500000 -do-<br />

Bidya Gosaba Mathurakh<strong>and</strong>a 1000 18500000 -do-<br />

Bidya Gosaba Bali 1000 18500000 -do-<br />

Puinjali Gosaba Puinjali 700<br />

12950000<br />

-do-<br />

Gomor Gosaba Sonagaon 500 9250000 -do-<br />

Ramgabelia Gosaba Lahiripur 1000 18500000 -do-<br />

Hogol Basanti Basanti 630 11655000 -do-<br />

Hogol Basanti 7 No. Sonakhali 1500 27750000 -do-<br />

Hogol Basanti 6 No. Sonakhali 1500 27750000 -do-<br />

Hana Basanti Kalahazra 1000 18500000 -do-<br />

Baniboalia Basanti Charabidya 500 9250000 -do-<br />

Hana Basanti Sachekhali 300 5550000 -do-<br />

Piprakhali Basanti Kumrakhali 500 9250000 -do-<br />

Matla Basanti Nafarganj-lll 1200 24240000 -do-<br />

Matla Basanti Nafarganj-VI 400 8080000 -do-<br />

Bidya Basanti Birinchibari 2500 50500000 -do-<br />

Bidya Basanti Jyotishpur 750 15150000 -do-<br />

Herodhanga Basanti Jharkhali-IV 1000 20200000 -do-<br />

Matla Basanti Laskarpur 1500 30300000 -do-<br />

Matla Basanti Parbatipur 1500 30300000 -do-<br />

Matla Basanti slafarganj-ll 1500 30300000 -do-<br />

Matla Kultali Deulbari 530 10706000 -do-<br />

Matla Kultali Deulbari 1169 23613800 -do-<br />

Matla Kultali Kaikhali 890 17978000 -do-<br />

Gurakhal Kultali Nagenabad 500 9250000 Type of Work- I<br />

Thakuran Kultali Madhya Gurguria 1250 25250000 Type of Work-ll<br />

Thakkkuran Kultali Bhubaneswari 2350 47470000 -do-<br />

Matla Kultali Dongajorah 860 17372000 -do-<br />

Nabipukur Kultali Deulbari 800 14800000 Type of Work-l<br />

Jaynagar-ll Chuprijhora 500<br />

9250000<br />

Type of Work-IIA<br />

Thakuran Kultali Baikunthapur 1500 30300000 Type of Work-IIB<br />

Mridangabhanga Patharpratima Mahespur 650 12025000 Type of Work-IIA<br />

Jagaddal Patharpratima Sirdharnagar Purba 500 9250000 -do-<br />

Thakuran Patharpratima Sri Patinagar 3000 60600000 Type of Work-IIB<br />

Thakuran Patharpratima purba sri Patinagar 600 12120000 -do-<br />

Jagaddal Patharpratima Sridharnagar 700 12950000 Type of Work-IIA<br />

Dhanchi & Jagaddal Patharpratima Sridharnagar 200 3700000 -do-<br />

Pakhirali Patharpratima Upendranagar 300 5550000 -do-<br />

Mridangabhanga Patharpratima Mahespur 550 10175000 -do-<br />

Pakchara Patharpratima Kuenari 600 11100000 -do-<br />

Thakkuran Patharpratima Dk Kashinagar 600 12120000 Type of Work-IIB<br />

Mridangabhanga Patharpratima Ramnagarabad 400 7400000 Type of Work- IIA<br />

Gobadia Patharpratima Parbatipur 400 7400000 -do-


6.23<br />

Gobadia Kakdwip Dk Kasiabad & Kasiabad 300<br />

5550000<br />

-do-<br />

Saptamukhi Kakdwip Harendramagar 200 3700000 -do-<br />

Vlridangabhanga Patharpratima Indraprostha 800 14800000 -do-<br />

Mridangabhanga Patharpratima Ramganga 700 12950000 -do-<br />

Sibua Patharpratima Achintanagar 800 14800000 -do-<br />

Mridangabhanga Patharpratima Laxmipore 300 5550000 -do-<br />

Raidighi Mathurapur-ll Kumrapara 300 5550000 -do-<br />

Raidighi Mathurapur-ll Kumrapara 200 3700000 -do-<br />

Raidighi Mathurapur-ll (umrapara 500 9250000 -do-<br />

Raidighi Mathurapur-ll Kumrapara 700 12950000 -do-<br />

Mridangabhanga Mathurapur-ll N<strong>and</strong>akumarpur 650 12025000 -do-<br />

Mridangabhanga Mathurapur-ll Mohabbatnagar 250 4625000 -do-<br />

Mridangabhanga Mathurapur-ll Mohabbatnagar 90<br />

1665000<br />

Type of Work-IIA<br />

Mridangabhanga Mathurapur-ll Mohabbatnagar 600 11100000 -do-<br />

Pakchara Mathurapur-ll Domkal 900 16650000 -do-<br />

Thakkuran Mathurapur-ll Domkal 500 9250000 -do-<br />

Pakchara Mathurapur-ll Kailashpur 800 14800000 -do-<br />

Thakuran Mathurapur-ll Purba Jaterdeul 700 12950000 -do-<br />

Sutarbag Mathurapur-ll Piprakhali 250 4625000 -do-<br />

Surarbag Patharpratima Dk Roypur 700 12950000 -do-<br />

Matla Canning-l Budhakhali 400 7400000 -do-<br />

Matla Canning-l Belekkhali 200 4040000 Type of Work-IIB<br />

Matla Canning-l Garkhali 250 4625000 Type of Work-IIA<br />

Matla Canning-l Redokhali 1500 27750000 -do-<br />

Matfa Canning-l Golabari 500 9250000 -do-<br />

Matla Canning-l Golabari 200 3700000 -do-<br />

Matla Canning-l Golabari 300 5550000 -do-<br />

Matla Canning-l Budhakhali 1500 27750000 -do-<br />

25590<br />

1329039800<br />

Type of Work-IIA: 325mm thick dry brick pitching in 3:1 slope. Estimated cost around Rs.<br />

18,500 per meter.<br />

Type of Work-IIB: 250mm thick brick block pitching in 4:1 slope. Estimated cost around<br />

Rs. 20,200 per meter.<br />

Location <strong>and</strong> cost of proposed repair to embankments with revetment under Joynagar<br />

Irrigation Division<br />

SI River Block & P. S. Mouza Length<br />

(in m)<br />

Total Cost (in<br />

Lakh)<br />

1 Puinjali Gosaba Kumirmari 500<br />

4000000<br />

2 Puinjali Gosaba Kumirmari 100<br />

800000<br />

3 Puinjali Gosaba Kumirmari 150<br />

1200000<br />

4 Sarsa Gosaba Kumirmari 250<br />

2000000<br />

5 Sarsa Gosaba Kumirmari 250<br />

2000000<br />

6 Roymangal Gosaba Chimta 400<br />

3200000<br />

7 Puinjali Gosaba Amtoli 300<br />

2400000<br />

8 Bidya Gosaba Taranagar 100<br />

800000<br />

9 Bagna Gosaba Kumirmari 150<br />

1200000<br />

10 Hana Gosaba Sambhunagar 1,000<br />

8000000<br />

11 Gomor Gosaba Rangabelia 200<br />

1600000<br />

12 Gomor Gosaba Uttardanga 400<br />

3200000


6.24<br />

13 Gomor Gosaba Dayapur 500<br />

14 Gomor Gosaba Sonagaon 350<br />

15 Gomor Gosaba Amlamethi 400<br />

16 Gomor Gosaba Bejoynagar 700<br />

17 Rangabelia Gang Gosaba Lahiripur 400<br />

18 Dutta Gosaba Luxbagan 100<br />

19 Bidya Gosaba Mathurakh<strong>and</strong>a 450<br />

20 Durgadoani Gosaba Arampur 300<br />

21 Matla Kultali Dakshin Garankati 1,000<br />

22 Nabipukur Kultali Gopalganj 800<br />

23 Piyali & Matla Kultali Dongajora 800<br />

24 Piyali Kultali Balaharania 400<br />

4000000<br />

2800000<br />

3200000<br />

5600000<br />

3200000<br />

800000<br />

3600000<br />

2400000<br />

8000000<br />

6400000<br />

6400000<br />

3200000<br />

25 Thakuran Kultali Krishrimohanpur 800 6400000<br />

26 JDongajora Kultali Dongajora 400 3200000<br />

27 JGurakhal Kultali Naganabad 400 3200000<br />

28 Nabipukur Kultali Sankijahan 400 3200000<br />

29 Bidya Basanti Radharanipur 500 4000000<br />

30 Bidya Basanti Godkhali 500 4000000<br />

31 Matla Basanti Kanthalberia 500 4000000<br />

32 Matla Basanti 6 No. Sonakhali 300 2400000<br />

33 Matla Basanti Nafarganj-III 1000 8000000<br />

34 Matla Basanti Nafarganj-IV 1000 8000000<br />

35 Matla Basanti Pur<strong>and</strong>ar 1150 9200000<br />

36 Hogal Basanti Ramch<strong>and</strong>rakhali 500 4000000<br />

37 Baniboalia Basanti Kumrakhali 500 4000000<br />

38 Thakukran & Sibua Patharpratima Paschim Sripatinagar 1000 8000000<br />

39 Pakhirali & Thakura Patharpratima Upendranagar 900 7200000<br />

40 Thakuran Patharpratima Purba Sripatinagar 200 1600000<br />

41 Jagaddal patharpratima Sridharnagar 200 1600000<br />

42 Pakchara Patharpratima Kuemari 400 3200000<br />

43 Mridangadganga Patharpratima Mahespur 150 1200000<br />

44 Saptamukhi Kakdwip Harendranagar 600 4800000<br />

45 JMridangabhanga Patharpratima Laxmipur 500 4000000<br />

46 JMridangabhanga Patharpratirna Laxmipur 500 4000000<br />

47 sibua Patharpratima Achintanagar 500 4000000<br />

48 IMatla Canning Budhakhali 500 4000000<br />

49 Matla canning Budhakhali 200 1600000<br />

50 Matla Canning Madhukhafi 1500 12000000<br />

51 Matla Canning Madhukhali 200 1600000<br />

52 Matla Canning Kripakhali 2000 16000000<br />

53 Raidighi Mathurapur-II Kumrapara 300 2400000<br />

54 Sutarbag Mathurapur-II Chapla 100 800000<br />

55 Mridangabhanga Mathurapur-II Kailashpur 300 2400000<br />

56 Mridangabhanga Mathurapur-II Mahabbatnagar 500 4000000<br />

57 Mridangabhanga Mathurapur-II Mahabbatnagar 300 2400000<br />

58 Thakuran Mathurapur-II Damkal 800 6400000<br />

59 Thakuran Mathurapur-II Damkal 170 1360000<br />

60 Thakuran Mathurapur-II Damkal 680 5440000<br />

61 Pakchara Mathurapur-II Damkal 550 4400000<br />

Total 31,000 248000000<br />

Estimated cost of repairs to existing embankment by providing pitching of 300mm of dry brick:<br />

Rs. 8000 per metre length.


6.25<br />

Location <strong>and</strong> cost of proposed new embankments with revetment under Kakdwip<br />

Irrigation Division<br />

Block Facing river / sea Mouza Length<br />

(m)<br />

Cost (Rupees)<br />

Type of<br />

work<br />

Sagar Bay of Bengal Bhalat & shibpur 2800 140000000<br />

-Do- -Do- Shidpur 700<br />

35000000<br />

-Do- -Do- Chemaguri 500<br />

25000000<br />

-Do- -Do- Beguakhali 1200<br />

60000000<br />

Sagar Hooghly Sapkhali 2800 70000000<br />

-Do- -Do- Narharipur 800<br />

20000000<br />

-Do- -Do- -Do- 600<br />

15000000<br />

-Do- -Do- -Do- 500<br />

12500000<br />

-Do- -Do- Radhakrishnapur 600<br />

15000000<br />

-Do- Hooghly & Maygolia -Do- 1000<br />

25000000<br />

-Do-<br />

Hooghly & Harindari<br />

Radhakrishnapur (Vitar<br />

300<br />

Plot)<br />

7500000<br />

-Do- Hoogly Fuloubi 1800<br />

45000000<br />

-Do- -Do- Krishnanagar 1700<br />

42500000<br />

Sagar Muriganga Kachuberia 1000 25000000<br />

-Do- -Do- Muriganga 1000 25000000<br />

-Do- -Do- Siikarpur 1500 37500000<br />

-Do- -Do- Gobindapur 1500 37500000<br />

-Do- -Do- Devi - Mathurapur 1200 30000000<br />

-Do- -Do- Mrityunjoy Nagar 1000 25000000<br />

-Do- -Do- Sumati Nagar 1500 37500000<br />

-Do- -Do- Bankim Nagar 1500 37500000<br />

-Do- Hoogly Kastala 2000 50000000<br />

-Do- Muriganga Kachuberia 500 12500000<br />

Pathar Pratima Bay of Bengal Gobardhanpur 2500 125000000<br />

-Do- -Do- -Do- 1500 75000000<br />

-Do- - Do- Sttarampur 2500 125000000<br />

Pathar Pratima Jagaddal Sitarampur 600 15000000<br />

-Do- -Do- -Do- 900 22500000<br />

-Do- Saptamukhi Gobardhanpur 600 15000000<br />

-Do- -Do- Burabaurirtat 800 20000000<br />

-Do- -Do- Indrapur 1500 37500000<br />

-Do-<br />

-Do-<br />

Dakshin / Uttar<br />

1200<br />

Surendraganj<br />

30000000<br />

-Do- -Do- Dakshin Surendraganj 400 10000000<br />

-Do- Curzon Creek Surendraganj 200 5000000<br />

-Do- -Do- Gobindapur Abad 1800 45000000<br />

Pathar Pratima Curzon Creek Choto Rakhaskhali 1000 18500000<br />

-Do- Chaftabonia Gangapur 2000 37000000<br />

-Do- Walls Creek Khetra Mohanpur 600 11100000<br />

-Do- -Do- Brajaballavpur 600 11100000<br />

-Do- -Do- Chatta Rakash Khali 300 5550000<br />

-Do- Jagaddal Indrapur 1200 22200000<br />

-Do-<br />

-Do-<br />

Uttar / Dakshin<br />

500<br />

Surendraganj<br />

9250000<br />

-Do- -Do- Gangapur 300 5550000<br />

-Do- Saptamukhi Radhakrishna 500 9250000<br />

-Do- -Do- Brajaballavpur 500 9250000<br />

-Do- Curzon Creek Brajaballavpur & 1200 22200000<br />

Type III -<br />

C. Concrete<br />

Block in<br />

5:1 Slope<br />

Type III -<br />

Type - III<br />

Type II C<br />

Type II A


6.26<br />

Gobindapur Abad<br />

-Do- -Do- Surendraganj 300 5550000<br />

Pathar Pratima Barchara Hare Krishnapur 1000 12000000<br />

Namkhana Bay of Bengal Patibonia 300 15000000<br />

Type II A<br />

Type III<br />

" " " 400 20000000<br />

" " " 900 45000000<br />

" " " 600 30000000<br />

" " " 600 30000000<br />

" " Laxmipur Abad 800 40000000<br />

" " Baliara (East) 100M 50000000<br />

" " Baliara (West) 450 22500000<br />

" " Kusumtala (W) 1000 35000000<br />

Type II C<br />

Namkhana Muriganga Narayanganj 500 12500000<br />

Bagdanga (W) 600 15000000<br />

Debnagar 250 6250000<br />

Mousuni 550 13750000<br />

Namkhana Saptamukhi Haripur 600 15000000<br />

Type II A<br />

Haripur 400 10000000<br />

Haripur 200 5000000<br />

Haripur 350 8750000<br />

Haripur 500 12500000<br />

Namkhana Saptamukhi Dwariknagar 450 8325000<br />

Type II A<br />

Namkhana Channergang Patibonia 1550 28675000<br />

-Do- Mousuni 400 7400000<br />

Namkhana Hatania Doania Dwariknagar 700 8400000<br />

Namkhana Hatania Doania Namkhana 300 3600000<br />

Kakdwip Jagaddal Nadabhanga 1000 25000000<br />

& Namkhana Budakhali 1000 25000000<br />

Kalinagar 500 12500000<br />

Type I<br />

Type II C<br />

Kalinagar 1000 25000000<br />

Kakdwip Baratala Madhusudanpur 1100 27500000<br />

Kakdwip Hatania Doania Narayaanpur 1000 12000000<br />

Type I<br />

& Namkhana Iswaripur (South) 500 6000000<br />

Kakdwip & Kalnagini Jhangora 300 3600000<br />

Namkhana Ghughudanga Manmathapur 100 1200000<br />

72100 2113950000<br />

Type-I: 200mm thick dry brick pitching in 3:1 slope. Estimated cost around Rs. 12,000 per<br />

meter.<br />

Type of Work-IIC: 250mm thick dry brick block pitching in 4:1 slope. Estimated cost<br />

around Rs. 25,500 per meter.<br />

Type of Work-III: Cement Concrete Block (1:2:4) pitching in 5:1 slope. Estimated cost<br />

around Rs. 50,000 per meter.<br />

Location <strong>and</strong> cost of proposed repair to embankments with revetment under Kakdwip<br />

Irrigation Division<br />

Block Facing river / sea Mouza Length<br />

(m)<br />

Cost (Rupees)<br />

Type of<br />

work<br />

Prathar<br />

Pratima<br />

Bay of Bengal Sitarampur 2500<br />

20000000<br />

Block


6.27<br />

" Jagaddal " 800 6400000<br />

" Jagaddal " 500 4000000<br />

" Bay of Bengal Gobardhanpur 1000 8000000<br />

" Bay of Bengal Gobardhanpur 1500 12000000<br />

" Saptamukhi Indrapur 500 4000000<br />

" Saptamukhi Indrapur 500 4000000<br />

" Saptamukhi Indrapur 1000 8000000<br />

" Saptamukhi Gobardhanpur & R R T 1750 14000000<br />

" Saptamukhi Brojaballavpur 500 4000000<br />

" Curzon Creek Sobindapur Abadi 1750 14000000<br />

Sagar Bay of Bengal Beguakhali 1200 9600000<br />

" Bay of Bengal Shibpur 800 6400000<br />

" Bay of Bengal Chemaguri 600 4800000<br />

" Bay of Bengal Dhablahat 1500 12000000<br />

" Muriganga Kachuberia 400 3200000<br />

" Muriganga Sumatinagar 500 4000000<br />

" Muriganga Chemaguri 1000 8000000<br />

" Hoogly Fuldubi 950 7600000<br />

" Hoogly Naraharipur 600 4800000<br />

" Hoogly Radhakrishnagar(Bahir Plot) 800 6400000<br />

" Hoogly Radhakrishnagar (Bhitar Plot) 300 2400000<br />

" Hoogly Krishnanagar 900 7200000<br />

" Hoogly Fuldubi 450 3600000<br />

Namkhana Bay of Bengal Patibonia 3000 24000000<br />

" Bay of Bengal Lakashipur Abad 1000 8000000<br />

" Bay of Bengal Baliara (W) 1000 8000000<br />

" Bay of Bengal Baliara (E) 400 3200000<br />

" Muriganga Baliara (E) 700 5600000<br />

Vlousuni, Bagdan &<br />

" Muriganga<br />

1600<br />

Kusumtala (W)<br />

12800000<br />

" Saptarrtukhi Haripur 500 4000000<br />

" Saptamukhi Haripur 750 6000000<br />

" Saptamukhi Haripur 1050 8400000<br />

Namkhana Saptamukhi Iswaripur 400 3200000<br />

Kakdwip Muriganga Kalinagar 1000 8000000<br />

" Banstala Thangora 500 4000000<br />

" Banstala Manmathapur 500 4000000<br />

" Banstala Mrinalnagar 600 4800000<br />

35300 282400000<br />

Pitching<br />

repair work<br />

<strong>and</strong> Brick<br />

Pitching<br />

Estimated cost of repairs to existing embankment by providing pitching of 300mm of dry brick:<br />

Rs. 8000 per metre length.<br />

General abstract of costs<br />

District<br />

Irrigation<br />

Division<br />

Length of new<br />

revetment (in km)<br />

Length of repairs to<br />

revetment (in km)<br />

Total Cost<br />

(Rupees in Crore)<br />

North 24-Parganas Basirhat 82.20 33.20 141.45<br />

South 24-Parganas Joynagar 71.00 31.00 158.58<br />

South 24-Parganas Kakdwip 72.00 35.00 240.00<br />

Total 540.03


6.28<br />

In order to identify the exact location of the exisiting embankments, the satellite imageries of the<br />

study area were analysed. The LISS-III <strong>and</strong> PAN imageries were procured from National Remote<br />

Sensing Agency, Hyderabad <strong>and</strong> interpreted with the help of Regional Remote Sensing Service<br />

Centre, Kharagpur. In the following pages, the False Colour Composite (FCC) images of the entire<br />

area are presented in small segments matching with the Survey of India Topo-sheet extents. The<br />

corresponding sheet numbers are written over every image for easy identification. Overlain on the<br />

FCC images are the existing embankments, marked with different colours, depending upon the<br />

corresponding widths. A second set of digitized figures are also presented, which also mark the<br />

locations where new embankments are proposed by the Irrigation <strong>and</strong> Waterways Department,<br />

Government of West Bengal.


6.29


6.30


6.31


6.32


6.33


6.34


6.35<br />

Figure 6 -11<br />

Figure 6 -12


6.36<br />

Figure 6 -13<br />

Figure 6 -14


6.37<br />

Figure 6 -15<br />

Figure 6 -16


6.38<br />

Figure 6 -17<br />

Figure 6 -18


6.39<br />

Figure 6 -19<br />

6.2.7. Recommendations for retiring of embankments<br />

The following tables provide a list of sites where embankment has to be retired. This has been<br />

taken from the note of Superintending Engineer, eastern Circle, I&W Department, Government<br />

of West Bengal that was prepared in April 1997.<br />

Basirhat irrigation division<br />

Sl.<br />

No.<br />

Name of Mouza. Name of P.S. Name of River Length (m)<br />

1. Malancha (South) Minakhan Bidyadhari 300<br />

2. Kheriat (North) -do- -do- 500<br />

3. Khariat (South) -do- -do- 300<br />

4. Boania Abad -do- -do- 800<br />

5. Bayamari Abad -do- -d0-- 300<br />

6. Ranigachi Haroa -do- 500<br />

7. Batlia -do- -do- 300<br />

8. Shemla -do- Jagannatdokhal 500<br />

9. Behari -do- -do- 300<br />

10. Uchildah -DO- Burikhal 2000<br />

11. Mallick Bhari -do- -do- 2000


6.40<br />

12. Bachra Abad -do- M at akh al 600<br />

13. Bachra -do- -do- 200<br />

14. Mal Kanghumti Hingalgunj . olindi 2000<br />

15. Gobinda Khali -do- -do- 400<br />

16. Samser Nagar -do- Kalindi 300<br />

17. Pansurnagar -do- -do- 300<br />

18. Gharalkhali -do- -do- 80 0<br />

19. Hingalgunj -do- Ichhamati 100<br />

20. Rampur -do- Raimongal 800<br />

21. Madhabaka -do- -do- 500<br />

22. Rampur S<strong>and</strong>eshkhali SahebKhali 200<br />

23. Pakuria -do- -do- 600<br />

24. Gongachha -do- -do- 500<br />

25. Lebekhali -do- -do- 300<br />

26. Amberia No. -do- -do. 500<br />

27. Choto Sahabkhali -do- -do- 500<br />

28. Santea -do- -do- 600<br />

29. Bh<strong>and</strong>ar Khali -do- Goureswar 40'<br />

30 Purba Khajuberia -do- -do- 500<br />

31. ~t Amberia No. 3 -do- -do- 500<br />

32. Kumirmari Hasnabad. Dansa 600<br />

33. Tengtala Hasnabad Dansa 500<br />

34. Dhani Khali -do- Dansa 500<br />

35. Durgapur -do- -do- 700<br />

36. Bhanga Tushkhali S<strong>and</strong>eshkhali Rampur 500<br />

37. Parba Paschim Jakhali -do- -do- 400<br />

38. Kalinagar -do- Ghatihara 400<br />

39. Dwarik Jungle -do- Chhoto Kalagachi 500<br />

40. Tushkhali -do- -do- 400<br />

41. Puin jali -do- -do- 500<br />

42. Sulkulin -do- Dansa 400<br />

43. Ghak Khali -do- Bidya 400<br />

44. Ramnagar Bosaba Pthankhali 400<br />

45. Ch<strong>and</strong>ipur -do- Kartal 400<br />

46. Surjaberia Circuit Gosaba Gomer 500<br />

47. Gosaba -do- Gomer 500<br />

48. PathanKhali -do- Pthankhali 400<br />

Total length of retired embankment (in meters) = 27,000<br />

Joynagar irrigation division<br />

Sl.<br />

Name of Mouza. Name of P.S. Name of River<br />

No.<br />

Length (m)<br />

1. Purba Sridharpur Patharprotima Thakuran 600<br />

2. Maheshpur &<br />

-do- Mridan gabhanga 750<br />

3.<br />

Kedarpur<br />

N<strong>and</strong>a Kumarpur & Dakshin<br />

Joykrishnapur -do- -do- 900


6.41<br />

4. Rajraj Swarup &<br />

Ramnagar Abad -do- Gobadia 600<br />

5. Purna Ch<strong>and</strong>rapur -do- -do- 2000<br />

6. Durba Ghati Kultoli Selemati 400<br />

7. Damkal -do- Pukchara 750<br />

8. KeoraKhali Mathurapur Sutarbag 600<br />

9. Herambagopalpur Kultoli Kumari 200<br />

10. Purbaja Deul Mataurapur Chhatua 650<br />

11. Nalgola -do- Moni 750<br />

12. radhaKantapur -do- -do- 900<br />

13. Radhaballavpur -do-<br />

Th aku r an 700<br />

14. Kaikhali<br />

-do-<br />

-do- Matla. 900<br />

15. Gopalgunj Kultoli Sabipukur 600<br />

16. Madhusudanpur Mathurapur Thakuran 600<br />

17. Dakshin Narayantala -do- Matla 900<br />

18. Khas Kumrakhali -do- Bidyadhari 900<br />

19. Kumari Kultoli<br />

Kuerari 600<br />

Total length of retired embankment (in meters) = 15,000<br />

Kakdwip irrigation division<br />

Sl.<br />

No.<br />

Name of Mouza. Name of P.S. Name of River Length (m)<br />

1. Kastala West Sagore Hooghly. 900<br />

2. Kachuberia -do- Muriganga 750<br />

3. Muriganga -do- -do- 300<br />

4. Sikarpur -do- -do- 750<br />

5. Sumati Nagar -do- -do- 300<br />

6. Lakshipur Abad ( Freasergunj) Namkhana Bay of Bengal 600<br />

7. Haripur -do- Saptamukhi & Sundarika. 600<br />

8. Dakshin Durgapur -do- Chiner 250<br />

9. Debnagar Narayangunj -do- Chiner 300<br />

10. Dwarik Nagar -do- Hatania Donia & Sundarika 750<br />

11. Namkhana -do- -do- 750<br />

12. Sitarampur Patharprotima Jagaddal 400<br />

13. Chhotta Rakhashkhali -do- Curzen Creek 500<br />

14. Sibnagar -do- Jagaddal 500<br />

15. Purba Sripatinagar -do- Thakuran 600<br />

16. Brojoballavpur -do- -do- 600<br />

17. Gobindapurabad -do- -do- 600<br />

18. Ramtanu Nagar Kakdwip Hooghly 600<br />

19. Lakshmipur -do- -do- 600<br />

20. Sib Kabnagar -do- -do- 600<br />

21. Budhakhali -do- -do- 600<br />

22. Iswaripur & Narayanpur -do- Hatania Doania 850<br />

Total length of retired embankment (in meters) = 13,000


6.42<br />

The above recommendations of the total 55 kms of retired embankment shall require l<strong>and</strong> acquisition<br />

of around 1947 hectare costing approximately Rs. 23 Crores as per 1997 price index. Though some<br />

of the acquisition has already been done by now, but considering a gradual rise in l<strong>and</strong> prices, the<br />

cost of acquisition of the remaining l<strong>and</strong> is about Rs. 30 Crore. Construction of these embankments<br />

would require another Rs. 10 Crore.<br />

6.3. Riverbank protection<br />

This is the hard option of protecting a riverbank from failing under erosion. It is seen that the most<br />

critical length of the rivers that need to be protected from failure by bank erosion is the 55 kms<br />

identified in section 8.2 for retirement of the existing embankments. The bank protection has to be<br />

done in a scientific manner, <strong>and</strong> using local material as much as possible. However, it is felt that hard<br />

protections may be avoided since it may so happen that the protected bank remains safe under the<br />

protection but the other banks which are unprotected start loosing a greater amount of material as a<br />

result. Also the cost would be rather high. Instead, the region that is available as a result of retiring of<br />

embankment may be planted with mangrove saplings as mentioned in the following section.<br />

6.4. Mangrove regeneration<br />

Mangroves have been known to help the coastal belts from the ravaging action of waves as<br />

generated by tsunamis or cyclones. As is well known, <strong>and</strong> recorded by Sanyal (2006), when Tsunami<br />

struck the Tamil Nadu during December 2004, the areas behind Pichavaram <strong>and</strong> Muthupet with<br />

dense mangroves suffered fewer human casualties <strong>and</strong> less damage compared to areas without<br />

mangroves. During October 1999, mangrove forests reduced the impact of a super cyclone that<br />

struck Orissa killing at least 10,000 people <strong>and</strong> making 7.5 million homeless. The human settlements<br />

behind mangroves did not suffer loss. During the year 1988 the devastating cyclone of Sundarban<br />

damaged most of the embankments. But after the cyclone it was noticed that the embankments that<br />

had either toe line mangrove plantations or natural mangrove buffer had hardly been damaged. The<br />

most stable portions were the embankments where a ring dyke was also constructed <strong>and</strong> mangrove<br />

regenerated in between them as in the Shikarpur forest campus <strong>and</strong> its vicinity.<br />

Mangroves are efficient silt trappers <strong>and</strong> it has been proved that the delta progradation of Sundarban<br />

largely depend on the sediment trapping by the mangroves. The presence of mangroves at the<br />

intertidal flats on foreshore of the embankments also helps in sediment accretion at the base of the<br />

embankments <strong>and</strong> strengthening it in turn. The dearth of s<strong>and</strong> in the old Digha sea beach is partially<br />

related to the mangrove clearance of Digha Mohana estuary for a large scale co-operative Fishery


6.43<br />

project. Such sediment deficit ultimately prevents accretion that is so much necessary for the stability<br />

of sea wall or embankments. Mangroves at the foreshore of the creeks cause narrowing of creek<br />

orifices that result in increase of the velocity of water <strong>and</strong> helping the river channel to maintain the<br />

depth which helps in navigation.<br />

For mass plantation of mangroves, normally Ganwa (Excoecaria a gallocha) short poles are driven to<br />

support vegetative palisades on the riverside slope. The quick sprouting Genwa helps to sustain the<br />

brushwood palisade initially. Then the seedlings of other naturally regenerated mangrove species<br />

take the charge of maintaining the stability of the embankments. Usually, 2 to 3 lines of palisades<br />

along the toe line are structured in a staggered fashion. Seeds of Baen (Avicennia spp) are sown in<br />

the palisade which sprouts to stabilise the embankment. On the upper part of the slope Hental<br />

(Phoenix paludosa) <strong>and</strong> Genwa seeds are to be sown. In case of very gentle slopes three lines of<br />

mangrove plantations may be raised on the foreshore to protect the embankment. Hental being<br />

monocot have fibrous roots <strong>and</strong> will protect the embankments if the seeds are sown on the slope by<br />

dibbling. On the leeward side again Phoenix <strong>and</strong> Coconut should be encouraged to stabilise the<br />

embankments. These two species being freshwater monocot again have fibrous roots, which are<br />

likely to render stability to the embankments.<br />

Application of Geojute <strong>and</strong> planting of Kaora (Sonneratia apetala) have been extremely successful in<br />

Nayachar Isl<strong>and</strong>. In fact on the higher slopes of V-shaped channels terracing the slope <strong>and</strong> planting<br />

the mangrove prefers application of Geojute. The steeper long slopes at Nayachar were excavated to<br />

form the 1m wide terraces at 2m vertical gaps. The terraces were then covered with tar treated jute<br />

having proper perforations to accommodate the plant saplings. The transplanted mangrove saplings<br />

<strong>and</strong> hypocotyles found their way upwards through the artificial perforations made on the treated jute<br />

cover. The process helps the plants <strong>and</strong> hypocotyles from being washed away. In case of gentler<br />

slopes, geo jute is less used. But there can be a use if it is felt that the seeds are likely to be washed<br />

away by the currents or may be vulnerable to grazing damage. To day the initial geo-jute plantations<br />

of Sonneratia apetala of Nayachar has not only made the embankment extremely stable but also has<br />

given rise to natural regeneration of other mangroves like Rhizophore, Bruguiera <strong>and</strong> Excoecaria<br />

spp.<br />

Raising of mangrove plantation in the char l<strong>and</strong>s that is available in between the embankments <strong>and</strong><br />

the river face may help to reduce the impact of wave dash at the time of storm surges generated due<br />

to cyclones. However, such l<strong>and</strong> is not readily available for all the embankments since most of the<br />

embankments have been constructed very close to the river. It is estimated that at most about 10


6.44<br />

percent of the embankments (around 3,00,000 meters) have enough space (at least 100 meters)<br />

strip of l<strong>and</strong> between itself <strong>and</strong> the riverbank which may be planted with mangrove saplings. Thus,<br />

Area available for planting mangrove saplings: 3,00,000 x 100 = 30000000 sq. meters. = 3000<br />

hectares. As per the estimate of the Sunderban Development Board, plantation of mangrove saplings<br />

costs around Rs. 6500 per hectare. Therefore,<br />

Cost of mangrove plantation: 3000 x 6500 = Rs. 1,95,00,000<br />

Apart from this, an additional area that would be available after retirement of the embankments (as<br />

given in Section 8.2) may be planted with mangrove saplings, at least on a part of the area, if not on<br />

the whole. Thus,<br />

Area available for planting mangrove saplings after retiring 55 kms of embankments is 1947<br />

hectares. Therefore,<br />

Cost of mangrove plantation: 1947 x 6500 = Rs. 1,26,55,500<br />

Thus the total cost of mangrove plantation comes to about Rs. 3,21,55,500, Say, Rs. 3 Crores.<br />

6.4.1. The process of making mangrove plantation from various seeds<br />

The following information regarding the growing of mangroves from seeds is included for<br />

completeness. This has been prepared from the note of Assistant Forest Officer, 24-Parganas South<br />

Division, Sundarban Development Board, West Bengal.<br />

1. Survey: Survey, Demarcation <strong>and</strong> also making map of the area of Mangrove plantation are<br />

made in February to March <strong>and</strong> through discussion is made with public arid members of<br />

panchyet about the purpose of mangrove plantation in the region so that the public are<br />

encouraged for protecting the Mangrove plantation.<br />

2. Soil Work: Soil work starts from April <strong>and</strong> continues till June. This includes:<br />

a) Digging contour trench of size 30cm x 30cm x length, 2 mt. apart <strong>and</strong> dug out soil is<br />

deposited on the upper side of the trench towards the river - embankment.<br />

b) Digging pits of size 30cm x 30cm x 30cm, 2mt apart in between contom trench. Alluvial<br />

soil is deposited in the pits & Trench during high tides <strong>and</strong> low-tides in the river & they<br />

become fit for sowing seeds.<br />

3. Seeds: Avicennia (alba,marina,officinalis) Bruguiera (Gyrnnorhiza, parviflora) Ceriops<br />

(dec<strong>and</strong>ra, tagal), Xylocarpus(Granatum, makongensis), Heritiera fomes, Phoenies


6.45<br />

paludosa, Rhizophora apiculata,Sonneratia apetala, Nypa fruiticans Aecjiceras<br />

carn.iculatum, Excoecaria aqallocha, Seeds are generally sown. Mostly Avicennia species<br />

are sown all over the area. Then seeds are available in Sundarban Tiger Project <strong>and</strong> 24-<br />

Parganas(S) Division.<br />

4. Seeds Collection: Ripe <strong>and</strong> Mature seeds are available in July to September. Only<br />

Avicennia Marina seeds are available in October. Excoecaria agallocha, Nypa fruiticans<br />

seeds are available in January. It is better to collected ripe <strong>and</strong> meture seeds. Seeds are<br />

collected with the help of fine fishing nets during high-tide & low-tide in Kotal Sometimes<br />

seeds are collected from inside the forest on the river bank during kotal.<br />

5. Stores of Seeds: It is better to procure these seeds & sow immediately as it is not possible<br />

to preserve these seeds for more than 7 to 15 days. However seeds may be preserved for a<br />

year through nursery.<br />

6. Planting: The planting of the various species should be done according to the following<br />

guidelines:<br />

a) Avicennia species are better panted the entire trench at a distance of 50 cm. <strong>and</strong> on<br />

the upper region which is not watered by tide-water. Ceriops species, Bruguiera spp,<br />

Xylocarpus spp, Excoecaria spp, Heritiera spp, phoenix spp, should be planted in<br />

trench at a distance of 1 mt. <strong>and</strong> in pit at a distance of 2 mt.<br />

b) On the lower region which is regularly watered by tide water everyday. Sonneratia<br />

apetala Aegiceras Carniculatum Rhizophora apiculata, Nypa fruitecans are planted<br />

in pits. It is better to plant them in Trench at a distance of 2 mt.<br />

c) If the region is under the lower tide <strong>and</strong> is muddy then three types of Avicennia spp<br />

<strong>and</strong> Sonneratia apetala may be planted for good plantation.<br />

d) Seeds are generally sown twice or thrice time in a year. There is a time when either<br />

all the seeds are not available or most seeds are carried away by tide.<br />

7. Nursery Seedling: This is to be done in the following way:<br />

a) Direct sowing is done in Nursery beds i.e. Sonneratia apetala.<br />

b) Polypots is filled by the earth in the bed on which Heritiera formes Bruguiera<br />

(Gymnorhiza & parviflora) Ceriops (dec<strong>and</strong>ra, tagal), Xylocarpus (Granaturn,<br />

Makongensis), Nypa fruiticans, Rhizophora apiculata etc. are sown.<br />

8. Use of seedlings: Seedlings are used in the following ways::<br />

a) Vacancies are filled in the plantation.


6.46<br />

b) Seedlings are planted during December <strong>and</strong> January when tides <strong>and</strong> waves are not<br />

so strong in the river.<br />

Some of the species <strong>and</strong> their seeding <strong>and</strong> flowering times are provided in the following table:<br />

Sl. No. Species Local Name Flowering<br />

time<br />

Seedling<br />

time<br />

l. Avicennia Alba Paira Bain April July<br />

2. Avicennia Marina Kalo Bain June October<br />

3. Avicennia Officinalis Jat Bain April July<br />

4. Heritiera Formes Sundari March July<br />

5. Bruguiera Gymnorhiza Kankra April July<br />

6. Bruguiera Paruiflora Ban Bakul April July<br />

7. Xylocarpus Granateria Dhudul April August<br />

8. Xylocarpus Mankongensis Pasur April July<br />

9. Aegiceras Carniculatum Khalsi March July<br />

10. Aegialitis Rot<strong>and</strong>ifolia Tora March July<br />

11. Rhizophora Apiculata Garjan April August<br />

12. Sonneratia Apiculata Keora April September<br />

13. Excoecaria Agollacha Genwa March July<br />

14. Ceriops Dec<strong>and</strong>ra Garan March July<br />

15. Ceriops Tagal Math Garan March July<br />

16. Phoenix Paludosa Mental March July<br />

17. Nypa Fruiticans Golpata July February<br />

The growth of the above mentioned species of mangroves (from the first to the fifth year) are as<br />

follows:<br />

Height in metres<br />

Sl.<br />

Species<br />

No.<br />

1 st yea 2 nd year 3 rd year 4 th year 5 th year<br />

1. Avicennia alba 0.89 2.68 2.88 3.55 5.90<br />

2. Avicennia Marina 0.80 2.60 2.80 3.50 5.80<br />

3. Avicennia Officinalis 0.88 2.65 2.85 3.55 5.85<br />

4. Heritiera formes 0.45 0.75 0.86 0.95 1.20<br />

5. Bruguiera Gymnorhiza 0.59 0.88 0.98 1.12 2.00<br />

6. Bruguiera Baruiflora 0.55 0.78 0.91 1.10 1.90<br />

7. Xylocarpus Granatum 0.90 2.55 2.90 3.60 6.00<br />

8. Xylocarpus mankongensis 0.80 1.25 1.40 2.42 2.98<br />

9. Aegiceras carniculatum 0.55 0.65 0.80 0.95 1.15<br />

10. Aeqiceras rot<strong>and</strong>ifolia 0.40 0.48 0.70 0.90 1.05<br />

11. Rhizophora apiculata 0.80 1.25 1.40 2.42 2.98<br />

12. Sonneratia apetala 0.90 2.55 2.90 3.60 6.00<br />

13. Excoecaria agollacha 0.65 0.80 0.90 1.10 1.25<br />

14. Ceriops dec<strong>and</strong>ra 0.28 0.43 0.53 0.64 0.75


6.47<br />

15. Ceriops tagal 0.22 0.40 0.50 0.61 1.72<br />

16. Phoenix paludosa 0.40 0.55 0.70 0.85 1.05<br />

17. Nypa fruiticans 0.50 0.60 0.76 0.95 1.20<br />

6.5. Coastal erosion protection<br />

The total length of coastal embankment in West Bengal is about 58 kms stretching from the Orissa-<br />

West Bengal border west of Digha upto the Rasulpur river. It is maintained by the Irrigation <strong>and</strong><br />

Waterways Department, Government of West Bengal. The embankment protects the inundation of<br />

inl<strong>and</strong> habitated areas from the wrath of violent cyclonic storms <strong>and</strong> consequent storm surges.<br />

However, the embankment is not very close to the sea at all places. At Ch<strong>and</strong>pur, for instance, it is<br />

so close to the sea that it has been eroded off along a considerable length. At places like<br />

Shankarpur, the embankment is safe, but a large chunk of coastal shelter belt plantation of Casurina<br />

trees have come under the threat of erosion by the dashing sea waves. The jetty at the same place<br />

has been washed off, <strong>and</strong> at present some temporary measures have been taken by the Irrigation<br />

<strong>and</strong> Waterways Department, to reduce the effect of the waves. At Digha, the erosion of sea beach<br />

has been prevented from further recession by providing a very costly revetment using concrete<br />

blocks. But just east of this section, there is severe erosion <strong>and</strong> a big patch of Casurina shelter belt<br />

plantation is presently under threat of being wiped away. It may be noted that in the past couple of<br />

decades, quite a good area of such plantation has already been devoured by the sea by repeated<br />

wave action <strong>and</strong> enhanced wave dashes during cyclonic storms.<br />

As such, the severely affected portion of the coastal embankment that is affected by erosion (<strong>and</strong><br />

enhanced during occurrences of cyclones) is estimated to be about 20 kms. This is because not all<br />

coastline of West Bengal is affected by erosion. In fact, at Junput, there has been a lot of deposition<br />

<strong>and</strong> the shoreline has shifted seawards over the years. Anyway, the reach that is affected by severe<br />

erosion needs immediate attention, otherwise valuable l<strong>and</strong> is likely to get lost due to shoreline<br />

recession <strong>and</strong> consequent loss of human habitated l<strong>and</strong> areas.<br />

A possible solution to counter the sea face erosion is to provide a boulder revetment underlain with<br />

geotextile, as shown in Figure 6-20. This design has been taken from the Manual on the use of Rock<br />

in Hydraulic Engineering published by the Road <strong>and</strong> Hydraulic Engineering Division of the<br />

Government of Netherl<strong>and</strong>s. It has been tested in many locations along sea faces, though certain<br />

other methods may also prove equally useful.


6.48<br />

Figure 6 -20. Typical coastal revetment sections<br />

The cost of providing this kind of protection would cost nearly 4 Crores per km. Thus, for the<br />

protection of the severely affected sea face of 20 kms as identified in the above paragraphs, an<br />

amount of Rs. 80 Crores is required to be invested.<br />

6.6. Shelterbelt plantation<br />

To protect the settlements along the coast line, especially along the coast of East Midnapore district,<br />

shelterbelt can be provided as wind break. Species like Casurina, Subabul etc which are locally<br />

available serves the purpose effectively. The plantation width <strong>and</strong> orientation should be guided by the<br />

wind direction <strong>and</strong> the alignment of the human settlement. Care should be taken that the plantation<br />

is not monoculture but accommodates diverse range of species. Plantation of cash crops, especially<br />

coconut, palm etc will increase the biodiversity of the shelter belt plantation along with increasing<br />

community participation in maintaining them. It has been observed that the l<strong>and</strong>fall of cyclone takes<br />

place for a reach of about 50 kms – out of which approximately 30 km stretch does not have either<br />

any kind of plantation or have depleted over time. The estimated expenditure for plantation of


6.49<br />

shelterbelt (average 100 m width) comprising of Casurina, Subabul <strong>and</strong> other cash crops for this<br />

stretch will be approximately 1.5 crores ( @ Rs. 50,000 per Ha).<br />

6.7. <strong>Cyclone</strong> shelters<br />

Post Disaster damage assessment studies indicate that cyclone <strong>and</strong> consequential flooding claim<br />

many human lives <strong>and</strong> livestock in the coastal district of the state. Most of the housing stock in this<br />

region is made of temporary roof <strong>and</strong> wall material – thus being most vulnerable to the high velocity<br />

winds <strong>and</strong> flooding. Vulnerability of housing stock being the prime reason for loss of human life, there<br />

is a need to provide community cyclone/flood shelters to offset this situation.<br />

Mapping of the vulnerability of human life along with the mapping of cyclone <strong>and</strong> flood hazards helps<br />

in identifying the priority areas for locating cyclone shelters. 12 CD blocks in the South 24 Parganas<br />

enlisted below are in dire need for community cyclone shelters – as the existing hosing stock is more<br />

vulnerable as well as they are located in areas with very high probability of hazard incidence.<br />

Table 6 -1. House type vulnerability in CD blocks identified for community cyclone/flood shelter<br />

C.D Block<br />

Total no. of<br />

Inhabitated<br />

villages<br />

Population<br />

Average<br />

population<br />

per village<br />

% of<br />

Houses<br />

having<br />

temporary<br />

roof<br />

material<br />

% of<br />

Houses<br />

having<br />

temporary<br />

wall<br />

material<br />

Housing<br />

Vulnerability<br />

Index<br />

<strong>Cyclone</strong><br />

Hazard<br />

Level<br />

Proposed<br />

<strong>Cyclone</strong><br />

Shelter<br />

(no.s)<br />

Kultali 43 187989 4372 0.971 0.996 1.997 Very high 172<br />

Basanti 65 278592 4286 0.963 0.991 1.963 Very high 260<br />

Gosaba 50 222822 4456 0.964 0.997 1.977 Very high 200<br />

Mathurapur-II 27 198281 7344 0.937 0.996 1.897 Very high 189<br />

Kakdwip 39 239326 6137 0.907 0.992 1.802 Very high 234<br />

Namkhana 38 160627 4227 0.948 0.995 1.929 Very high 152<br />

Sagar 42 185644 4420 0.964 0.997 1.979 Very high 168<br />

Patharprotima 87 288394 3315 0.967 0.998 1.989 Very high 261<br />

Design consideration for a typical <strong>Cyclone</strong> Shelter<br />

Catcment Area: 2 sq.km approx. or 1000 population, (within 0.75 km travel distance)<br />

[Catchment area for cyclone shelter has been reduced due predominance of creeks <strong>and</strong> channels<br />

one has to cross to reach them]<br />

Design Capacity: 100 - 120 persons (can be augmented upto 200 – 250 persons by<br />

constructing additional floors). This can be used as only cyclone shelter to accommodate<br />

nearly 1000 persons (@5 sgft per person).<br />

Design Area: 5000 sft (@50 sft per person).


6.50<br />

Plinth Height: min 3.0 m above G.L. [Ground floor stilted]<br />

Location: Preferably on high ground <strong>and</strong> protected by shelter belt plantation.<br />

Type of Construction: In accordance to the guidelines prescribed in ‘Improving Wind/<strong>Cyclone</strong><br />

Resistance - Guidelines’ (1999) by BMTPC (Building Materials <strong>and</strong> Technology Promotion Council)<br />

[Also refer to the NCRMP Guidelines]<br />

Approximate Cost of construction: Rs. 1.5 million per unit (assuming construction cost of Rs.<br />

300/sft)<br />

Ancillary facilities:<br />

1. Wireless L<strong>and</strong> Line (WLL)<br />

2. First Aid Kit<br />

3. Preventive health care kit (ORS <strong>and</strong> other life saving drugs)<br />

4. Safe drinking water storage (At least 1000 liters)<br />

5. Sanitation facility<br />

6. Food reserve for the children, sick <strong>and</strong> aged population<br />

7. Fuel reserve<br />

Alternative usage: Primary school, mass literacy center, community center, mass awareness<br />

campaign <strong>and</strong> other public utility purposes.<br />

Total Expenditure: Rs. 245 Crores [construction of 1640 no.s of cyclone shelters @ Rs. 1.5 million]<br />

Construction of Community Bovine Shelter<br />

The loss of bovines (cattle, buffalo, goat etc.) from cyclone <strong>and</strong> flooding has serious consequences<br />

on the local economy of the rural communities. In addition to the community cyclone shelters for the<br />

human beings, the need for community bovine shelter is also increasingly felt to offset this loss.<br />

Past experiences <strong>and</strong> indigenous local knowledge reveal that animals do not die due to rain but due<br />

to high velocity wind <strong>and</strong> gales. A l<strong>and</strong> with an area of approximately 2 acres, located on the high<br />

l<strong>and</strong> is adequate to provide shelter to the bovine population of an average village (assuming bovine<br />

population not exceeding 4000). Often it is wise to construct fish tanks (l<strong>and</strong> area of 8 acres approx.)<br />

next to the bovine shelter so that excavated earth can be used for elevating it to the desired level.<br />

Over this elevated l<strong>and</strong>, casurina <strong>and</strong> subabul (Leucaena leucocephala) plants are to be raised in<br />

alternate rows at a distance of 2m from plant to plant. In between the rows, Stylos hemata, a<br />

perennial leguminous fodder crop could be grown to augment the fodder needs. Arrangement of this<br />

kind will function as a wind break <strong>and</strong> also protect the animals in deluge.<br />

The entire task has to be accomplished upon community initiative. It is expected cost of construction<br />

of such typical shelters will be in the range of Rs. 0.75 million including the cost of acquisition


6.51<br />

(assuming l<strong>and</strong> acquisition cost of Rs. 20,000 per acre). The likely income that can be realized from<br />

the fish tank can be in the range of Rs. 0.3-0.5 million, after deducting the cost of investment. This<br />

income stream will help meet the annual maintenance cost of shelters as well as other community<br />

facilities.<br />

Vulnerability of the live stock population as well as the cycle/flood hazard incidence indicate that<br />

construction of community cattle shelter should be given top most priority for 3 CD blocks in South 24<br />

Parganas district – namely Basanti, Gosaba <strong>and</strong> Patharpratima as reflected in Table 6-2.<br />

Table 6 -2. Inventory of livestock in CD blocks identified for community animal shelter<br />

C.D Block<br />

Inhabitated<br />

Livestock<br />

Asset Value Livestock <strong>Cyclone</strong><br />

in Million Vulnerability Hazard<br />

Villages Cattles Buffaloes Goats Poultry Rs<br />

Index Level<br />

Basanti 65 82646 4165 69348 232615 757.56 0.901 Very High<br />

Gosaba 50 83104 1502 83155 282629 762.59 0.907 Very High<br />

Patharprotima 87 91106 834 70183 196705 793.44 0.947 Very High<br />

Total Expenditure: Rs. 15.2 Crores [Construction of 202 cattle shelters @ Rs. 0.75 million]<br />

6.8. Mobility Improvement<br />

Mobility improvement can significantly alter the magnitude of loss. Firstly during the emergency<br />

phase, i.e. during the period for evacuation, rescue, humanitarian assistance – where steps are taken<br />

to save lives <strong>and</strong> provide essential supplies to those most affected. Secondly, during the recovery<br />

phase for restoration of normalcy – mostly to allocation of manpower <strong>and</strong> resources to undertake<br />

repair <strong>and</strong> retrofitting activities. Therefore, it is of enormous importance to upgrade mobility (intraregional<br />

as well as intra regional) of these two coastal districts to increase the coping capacity from<br />

cyclone <strong>and</strong> flood hazards.<br />

Existing mobility pattern for goods <strong>and</strong> people indicate predominance of road based modes.<br />

However, in some parts of the South 24 Parganas district waterway navigation is extensively used.<br />

Identification of the CD blocks has been done based on the level of road connectivity along with<br />

degree of hazard proneness, as indicated in the Table 6-3.<br />

Table 6 -3. Existing Transportation infrastructure in CD blocks identified for mobility improvement<br />

C.D Block<br />

Road<br />

Connectivity<br />

Index<br />

<strong>Cyclone</strong><br />

Hazard<br />

Level<br />

Unsurfaced<br />

Road<br />

(km) 0 - 5<br />

Km.<br />

No. of inhabited villages<br />

away from metal road<br />

5 - 10<br />

Km.<br />

>10<br />

Km.<br />

No. of<br />

Ferry<br />

Service<br />

N<strong>and</strong>igram-I 0.973 Very High Nil 37 25 27 2<br />

Sutahata 0.952 Very High Nil 37 46 3 1<br />

Haldia 0.942 Very High Nil Nil Nil Nil 1


6.52<br />

Khejuri-II 0.931 Very High 235 51 10 Nil 3<br />

Ramnagar-I 0.992 Very High Nil 82 6 4 1<br />

Ramnagar-II 0.931 Very High 75 74 29 5 Nil<br />

Contai-I 0.975 Very High Nil 146 46 1 Nil<br />

Contai-II 0.950 Very High 175 117 22 Nil 3<br />

Kultali 0.965 Very High 318.25 7 14 20 13<br />

Basanti 0.989 Very High 185.8 18 18 18 6<br />

Gosaba 0.987 Very High 266 12 9 29 6<br />

Namkhana 0.969 Very High 308 8 6 Nil 5<br />

Sagar 0.900 Very High 528.43 12 9 4 8<br />

In this study, improvement of the mobility has focused has three key aspects as represented<br />

following.<br />

1. Capacity augmentation <strong>and</strong> surface quality improvement of existing road links<br />

This is done by upgrading the existing unsurfaced roads to Single lane WBM (Water Bound<br />

Macadam) roads.<br />

Total Expenditure: Rs. 167.3 Crores approximately [Conversion of 4227 kms Unsurfaced<br />

road to WBM roads @ Rs. 0.8 million/km]<br />

2. Identification of missing links<br />

A detailed look into the village level connectivity indicates that some of the villages are yet to<br />

have direct access through surfaced roads. Apart from these, culverts, bridges at key


6.53<br />

location are missing reducing the accessibility of these communities. These missing links are<br />

vital on the aftermath of cyclone/flood for emergency response as well as for faster<br />

restoration of normalcy. In addition to these, this missing links will help induce economic<br />

development of these communities, often residing within the bottom most bracket of the<br />

socio-economic stratum.<br />

Total Expenditure: Rs. 234 Crores [Up gradation of 880 kms Kutcha roads to WBM roads @<br />

1.5 miilion/km + additional 75 percent for construction of bridges <strong>and</strong> culverts at strategic<br />

locations]<br />

3. Improvement of waterway navigation<br />

There is a need to strengthen the existing waterway navigation facilities given their<br />

importance in some of the CD blocks in the district South 24-Parganas. Damage <strong>and</strong><br />

interruption to these facilities are mostly due to storm surge. Up gradation of the Jetty<br />

facilities, protection of the river banks at these locations, improving ingress <strong>and</strong> egress<br />

facilities as well as locating few more jetties at key locations will improve the overall<br />

accessibility of the region.<br />

Total Expenditure: Rs. 15.4 Crores [Up gradation of 49 jetties @ Rs. 1.5 million +<br />

construction of additional 20 jetties @ Rs. 4 million]


Chapter Seven<br />

Mitigation Strategies <strong>and</strong> Proposed Measures for<br />

Kolkata <strong>and</strong> Surroundings<br />

7.1. Present Status of the drainage system<br />

CHAPTER 7<br />

Dr. B.N. De's famous "Kulti Outfall Scheme" was commissioned with some gaps in 1943. Since then,<br />

it has undergone major modifications <strong>and</strong> expansion to meet the rapid growth of the city's area <strong>and</strong><br />

population. Following the partition of the country, the city experienced an unprecedented <strong>and</strong><br />

protracted exodus from the east. Drainage lines were obstructed due to habitation. Too much <strong>and</strong><br />

rapid urbanisation resulted in inadequate drainage capacities of the channels. The city of Kolkata <strong>and</strong><br />

its burgeoning environs became victims of notorious flooding <strong>and</strong> drainage congestion every year.<br />

Serious thinking started to see if anything can be done to ameliorate the distress of the people. The<br />

outfall channels have been cleared from time to time; the capacities of the pump houses were<br />

increased. But the lone Kultigong remains the ultimate drainage outfall from a much larger area. The<br />

discharge is more but the dry weather flow contains a large quantity of domestic sewage. There is<br />

practically no arrangement for treatment of this sewage. Hence the possibility of sedimentation of the<br />

Kultigong cannot be ruled out. The prevailing tides at the outfall resulted in a sluggish disposal of<br />

drainage water. All the drainage channels, viz. SWF, DWF, Bhangarkata, Bagjola have their outfalls<br />

in Kultigong. The Kolkata Drainage Outfall System along with DWF, SWF, THC channels were<br />

h<strong>and</strong>ed over by the Kolkata Municipal Corporation to the I.& W. Department on 01.5.1966. The<br />

different outfalling channels being excavated long back as the carrier of drainage water <strong>and</strong> sewage<br />

began to deteriorate. With the passage of time, due to heavy pressure under increased population<br />

<strong>and</strong> other factors, the canals had a dwindling flow, somewhere being almost stagnant, the water<br />

being in a brackish state mixed with toxic materials resulting in environmental <strong>and</strong> health hazards.<br />

The effluent of the channels does not only contain simply house drainage but a large part of it<br />

contains sewarage, toxic matters from small industries, tanneries <strong>and</strong> other solid wastes even from<br />

Kolkata Slaughter House in the Town Head Cut Channel. The channel sections being worsened for<br />

years together, disposal of drainage water suffered a setback <strong>and</strong> the purpose for which these<br />

channels were excavated began to frustrate. The situation took its worst turn during the last week of<br />

September, 1999 when heavy concentrated rainfall of 330 mm. within a period of only 10 hours


7.2<br />

resulted in large scale waterlogging. Water receded slowly, the inadequate drainage capacities of the<br />

channels being one of the main hindrances.<br />

The important locations where waterlogging takes place are shown in the annexed figures. The cross<br />

sections of some of the drainage channels are also shown.<br />

7.2. Past proposals for improvement of drainage of Kolkata<br />

A scheme, titled "Development of Comprehensive Drainage System in Kolkata Metropolitan Areas on<br />

the eastern bank of river Hooghly" was accordingly prepared following the recommendations of a<br />

High Powered Committee under the chairmanship of Dr. P.N. Roy constituted by Govt. of West<br />

Bengal in 1999 following an acute drainage congestion faced during the year. The work is under the<br />

aegeis of Housing Urban Development Corporation (HUDCO) loan assistance procured through<br />

West Bengal Infrastructure Development Finance Corporation (WBIDFC) Ltd. The scheme aims at<br />

better efficiency towards restoring the drainage system in <strong>and</strong> around Kolkata Metropolis <strong>and</strong> its<br />

environs as per original design stipulation <strong>and</strong> to remove the inherent impasse as far as possible.<br />

The scheme includes excavation of DWF, THC - SHC - SWF System, Bagjola Khal, Circular<br />

Beliaghata Khal, Kestopur-Bhangarkata Khal, <strong>and</strong> Pump House at outfall point at Kulti etc.<br />

7.3. Recommendations for further drainage improvement<br />

The following schemes need to be implemented for proper storm water disposal for the city of<br />

Kolkata <strong>and</strong> surrounding urbanised areas like Bidhan Nagar <strong>and</strong> adjacent upcoming new<br />

township of Rajarhat. These schemes have been decided jointly by the Kolkata Municipal<br />

Corporation <strong>and</strong> the Irrigation <strong>and</strong> Waterways Department, Government of West Bengal.<br />

1. Construction of additional pumping station at Maniktala within the existing with a force<br />

main delivery leading to the circular canal. Estimated cost: Rs. 6,00,00,000.<br />

2. Construction of lifting station on the bank of Kestopur canal to remove waterlogging at<br />

Maniktala area. . Estimated cost: Rs. 10,00,00,000.<br />

3. Construction of lifting station on the bank of Beliaghata canal to remove waterlogging<br />

near Eastern metropolitan Bye Pass. . Estimated cost: Rs. 4,00,00,000.<br />

4. Construction of a pumping station at the junction of K K tagore street <strong>and</strong> Str<strong>and</strong> Bank<br />

Road / Jackson Ghat. Estimated cost: Rs. 5,00,00,000.


7.3<br />

5. Construction of a pumping station at D N Mitra square in ward number 70. Estimated<br />

cost: Rs. 14,00,00,000.<br />

6. Augmentation of drainage pumping stations of the Kolkata Municipal Corporation.<br />

Estimated cost: Rs. 17,00,00,000.<br />

7. Construction of a super-pumping station across the SWF channel near Ghushighata<br />

of a capacity 31 cumecs. Estimated cost: Rs. 18,00,00,000.<br />

8. Construction of pumping stations at outfalls of Kestopur canal <strong>and</strong> Tolly’s Nullah.<br />

Estimated cost: Rs. 2,00,00,000.<br />

9. Construction of a pumping station near Humanity Hospital at Kalagachhia of a<br />

capacity 13.5 cumecs. Estimated cost: Rs. 1,00,00,000.<br />

10. Construction of a sluice at the junction of Tolly’s Nullah <strong>and</strong> River Hooghly near<br />

Daighat at Khidderpore. Estimated cost: Rs. 8,00,00,000.<br />

11. Construction of a pumping station near Thakurpukur cancer Hospital on Charial<br />

extentsion. Estimated cost: Rs. 4,00,00,000.<br />

It appears imperative that many of the drainage channels need to be excavated up to their respective<br />

design cross sections. Additionally, there could be a need to widen the canals at some places, due to<br />

the additional expected water discharge load from the upcoming township projects like Rajarhat<br />

which is supposed to discharge partly in the Lower Bagjola Canal <strong>and</strong> partly into Kestopur Canal.<br />

However, the difficulty could be the acquiring of additional l<strong>and</strong> by the side of the exisiting canals <strong>and</strong><br />

an extra amount need to be spent if such a proposal is undertaken. The following details are<br />

provided:<br />

7.3.1. Installation of a pump house of 25.50 m 3 /sec capacity at the out fail point of<br />

Ghushighata<br />

Outfall drainage efficiency will improve accruing the following benefits:<br />

1. To allow the additional discharge coming in the SWF channel.<br />

2. Drainage congestion of heavily populated urban areas will be eased.<br />

3. As the pumps would be operated during tide lockage, chances of siltation would be<br />

reduced.<br />

4. Lowering the FDL in SWF channel during tide lockage.


7.4<br />

5. No adverse effect in draining the drainage discharge on account of rise of low water<br />

level due to rise of river bed.<br />

6. Improvement in environmental condition<br />

7. Economic improvement of the community<br />

The pump house has been considered with future provision for Civil work <strong>and</strong> Mechanical <strong>and</strong><br />

Electrical components for present scenario:<br />

• For Mechanical & Electrical Equipment: The pumping capacity has been considered<br />

for 31.17 m 3 /sec. including st<strong>and</strong>by of 5.67 m 3 /sec.<br />

• Civil Structure: Civil structure is considered to be provided for a pumping capacity of<br />

45.27 m 3 /sec (including st<strong>and</strong>by provision) as below:<br />

Present provision:<br />

Future projection - 10% of 141.0 m 3 /sec:<br />

Total:<br />

31.17 m 3 /sec<br />

14.10 m 3 /sec<br />

45.27 m 3 /sec<br />

The proposed pumping station comprises of the following components:<br />

Inlet arrangement<br />

The Inlet arrangement of Ghushighata pumping station will consist of excavation of inlet<br />

channel, pond <strong>and</strong> construction of forebay.<br />

Pump house with pumping plant<br />

The proposed pumping station will have following pumps with all matching electrical <strong>and</strong> control<br />

equipment:<br />

• 5 nos. @ 4.25 m 3 /sec capacity (duty) + 1 st<strong>and</strong>by<br />

• 3 nos. @ 1.42 m 3 /sec capacity (duty) + 1 st<strong>and</strong>by<br />

Space provision for 3 nos. of 4.25 m 3 /sec capacity <strong>and</strong> 1 no. of 1.42m 3 /sec capacity j proposed to<br />

be kept in the pump house to meet the additional pumping requirement c 14.1 m 3 /sec in future<br />

(beyond 2035).<br />

Space required for construction of pump house is about 60 m x 16 m.


7.5<br />

Outlet arrangement:<br />

Outlet arrangement consists of excavation of outfall channel with construction of energy<br />

dissipating structures with side retaining wail, meeting with the outfall channel.<br />

Power supply arrangement:<br />

Provision for necessary power supply with substation facilities has been considered.<br />

Ancillary facilities<br />

(i) Internal roads (ii) Water supply (iii) Fire fighting equipment (iv) Exhaust fans <strong>and</strong> other<br />

accessories as required for ventilation purpose & (v) Bridge over outlet channel.<br />

Cost for the proposed pump house is estimated at about Rs. 18.00 Crores, the details of which are<br />

provided in the following table.<br />

A. Mechanical & Electrical Works<br />

Sl. No. Item Unit Quantity Rate in Rs. Amount in Rs.<br />

1 Pumps & Motors 4.25 cumec Set 6 4,750,000.00 28,500,000<br />

2 Pumps & Motors 1.42 cumec Set 4 2,820,000.00 11,280,000<br />

3 Pipes & Fiap Valves No. 10 800,000.00 8,000,000<br />

4 Stop Log Gates, Bar Screen &<br />

L.S. 4,000,000<br />

5<br />

Trash Rack<br />

Gantry Crane Set 1 5,000,000.00 5,000,000<br />

6<br />

Transformer 1 1/6 KV 2.5 MVA (Dry<br />

Set<br />

type)<br />

2 2,500,000.00 5,000,000<br />

7 VCB &VCP Panels L.S. 4,500,000<br />

8 VCB Panel (For S/S) L.S. 3,00,000<br />

9<br />

1000 KVA Transformer (Station<br />

service) Set 1 2,000,000.00 2,000,000<br />

10 Capacitors L.S. 700,000<br />

11 HT Cable / LT Cable / Con. Cable L.S. 4,000,000<br />

12 Incoming Feeder (HT)<br />

L.S.<br />

Included in Item<br />

No. 11<br />

13 Earthing L.S. 186,000<br />

14 Illumination L.S. 1,000,000


7.6<br />

15 LT Panel L.S. 2,200,000<br />

16 Instrumentation L.S. 600,000<br />

17 Communication Facilities L.S. 100,000<br />

18 Miscellaneous Facilities L.S. 367,000<br />

Installation <strong>and</strong> Commissioning<br />

charges<br />

Mechanical 1,900,000<br />

SubTotal (Rs.) 83,133,000<br />

Add 5% for Contingency (Rs.) 4,156,650<br />

B. Civil Works<br />

Sl. No. Item Unit Quantity Rate in Rs. Amount in Rs.<br />

1 Sump construction No. 15 1,400,000 21, 000, 000<br />

2 Pump house construction m 2 9600 1,330 12,768,000<br />

3 Retaining wails in Fore Bay LS 4,800,000<br />

4 Retaining walls in Energy Dissipator LS 5,000,000<br />

5 Paving of Forebay LS 800,000<br />

6 Paving of Energy Dissipator Bay LS 2,000,000<br />

7<br />

8<br />

9<br />

10<br />

11<br />

Earthwork in Sump, Forebay & Energy<br />

Dissipator bay<br />

LS 2,900,000<br />

Earthwork in inlet Channel with side<br />

<strong>and</strong> bed lining<br />

LS 6,300,000<br />

Shoring & Sheet Piling for<br />

Construction of Sump <strong>and</strong> Retaining<br />

LS 5,000,000<br />

Cross Bunds Construction,<br />

maintenance & removal<br />

LS 670,000<br />

Block Pitching on Slope including Toe<br />

Wall up-stream of Forebay<br />

Sq.m 3000 600,00 1,800,000


7.7<br />

12<br />

Excavation of Channel Down Stream<br />

with side & bed lining <strong>and</strong> protection at LS 5,700,000<br />

13 th Bridge tfdownstream ll i l di th of pump t house ti t m 36 100,000 3,600,000<br />

14 Concrete /Metalled road Sq.m 1200 800,00 960,000<br />

15 Boundary wall m 180 3,000,00<br />

16 Sub-station Building (Electrical) L.S 3,500,000<br />

17 Gates Sq.m 40 1,600,00 64.000<br />

18 Guard posts on road Each 16 1,040 16,640<br />

19 Soil Investigation & Survey LS 100,000<br />

SubTotal 77, 518, 640<br />

Add 5% for Contingency (Rs.) 3,875,932<br />

Total of Civil Works (B) 81,394,572<br />

Gr<strong>and</strong> Total ( A + B)<br />

178,684,222<br />

Say, Rs. 18 Crore<br />

7.4. Recommendations for water conveyance<br />

It has been explained how the river Bidyadhari, which used to convey the sewage <strong>and</strong> storm<br />

water of Kolkata more than a century back had become choked with sediment <strong>and</strong> silt over<br />

the years forcing Dr. B N Dey to suggest a 35 km long water disposal channel to the river<br />

Kultigong. It is apparent that the untreated sewage that has been disposed off into the river<br />

Kultigong has caused it to reduce in cross section over the years (Table 3-3). It may not be<br />

very far fetched to imagine that this river is likely to get choked in another 50 years’ time,<br />

unless some action is taken now to correct it. As may be apparent, once the riverbed level of<br />

Kultigong rises, the tidal lockage period is likely to increase due to the rise of the high tide<br />

levels, which has to be countered by setting up further high capacity pumps at the outfall<br />

points of the drainage disposal channels. In the event of a high precipitation (as during a<br />

cyclonic storm) the city of Kolkata <strong>and</strong> its surroundings discharging storm water through the<br />

Bagjola, Kestopur <strong>and</strong> SWF channels would face a difficult situation of storm water disposal<br />

<strong>and</strong> may be waterlogged for more than a day in much of its parts. This is because, the storm<br />

water that would be carried down these channels may have difficulty in discharging into the<br />

Kultigong as its water level is expected to be reigning high at this time by an action of high<br />

tide <strong>and</strong> storm surge. The effect of the river Kultigong reflecting upon the water disposals of


7.8<br />

Bagjola, Kestopur <strong>and</strong> SWF channels would finally affect the storm water disposal of the<br />

smaller drainage channels <strong>and</strong> the storm water sewers of the city of Kolkata, Bidhan nagar<br />

township <strong>and</strong> the upcoming Rajarhat township.<br />

The recommendations for improving the various segments of storm water conveyance for the<br />

city of Kolkata <strong>and</strong> its surrounding urbanised areas are provided in the following sections.<br />

7.4.1. Dredging of River Kultigong<br />

The river bed of Kultigong, as has been discussed, needs to be kept low <strong>and</strong> its cross section<br />

areas maintained at least as the maximum that once was (Table 3-3).<br />

River Kultigong be dredged regularly each year to check further siltation. Considering the<br />

difference in cross sections, it is estimated that maintenance dredging would require an<br />

amount of around Rs. 50 Crores initially. In order to keep the river from further deteriorating,<br />

<strong>and</strong> additional amount of Rs. 10 Crore has to be spent annually for maintenance dredging.<br />

7.4.2. Dredging of SWF channel<br />

As may be ssen from the cross section of the SWF channel at various places, the present<br />

section is markedly different from the design section. The length of the SWF channel is<br />

around 35 kms <strong>and</strong> considering the average of Rs. 1 Crore per km (as estimated from the<br />

difference in cross section), an amount of Rs. 35 Crores is required.<br />

7.4.3. Dredging of Bagjola canal<br />

There are two sections of the Bagjola canal, of which the upper section (of length 9 kms)<br />

needs urgent attention. Amongst the drainage area of this canal, there is a large area that<br />

drains out from private dairies. This inducts huge amount of solid waste into the canal.<br />

Considering the average of Rs. 1 Crore per km required for excavation of the canal, it is<br />

estimated that Rs. 9 Crores is required.<br />

The lower Bagjola canal is proposed to drain a large section of the upcoming megacity of<br />

Rajarhat. The agricultural l<strong>and</strong> that the area is today does not contribute much runoff to this<br />

canal. But the future urbanisation is definitely going to increase the runoff to this channel. It is<br />

thus necessary to increase the section of this channel in order to increase its storm water


7.9<br />

carrying capacity. It has been estimated that increasing the section may be difficult since<br />

large chunks of area on both sides of the canal has to be aquired. Instead, if the channel is<br />

made lined with vertical walls, then it would not involve l<strong>and</strong> acquisition. However, the cost of<br />

doing such would incur an estimated cost of around Rs. 2 Crore per km. Considering a length<br />

of around 20 km for the canal that would require lining <strong>and</strong> construction of vertical side walls,<br />

an amount of Rs. 40 Crore needs to be invested.<br />

7.4.3. Dredging of Kestopur canal<br />

This canal drains a part of the Bidhan Nagar Township, as well as Kolkata. The present<br />

sections show that this also requires excavation up to its design shape. It is estimated that<br />

around Rs. 0.5 Crores (Rs. 50,00,000) may be needed per km for doing this. Considering a<br />

length of 20 km that needs to be excavated for dredging the Kestopur canal, an amount of Rs.<br />

10 Crore is required to be set aside for the work.


Executive Cost Summary of Recommendations<br />

All the projects recommended in this report for mitigating the ravages of cyclones on some districts of<br />

West Bengal <strong>and</strong> on the city of Kolkata <strong>and</strong> its adjacent urbanized areas, have been provided in the<br />

following table. The cost estimates are preliminary in nature <strong>and</strong> the amounts have been rounded off<br />

to respective Rupees in Crores.<br />

Proposals for the districts<br />

Sl. No. Proposal Amount in<br />

Rs. Crore<br />

1 New revetments to existing embankments <strong>and</strong> repairs to existing<br />

embankments<br />

2 Retirement (l<strong>and</strong>-ward shifting) of existing embankments at critical<br />

locations<br />

540<br />

40<br />

Executive Cost Summary<br />

3 Mangrove plantation at locations between riverbank <strong>and</strong><br />

embankments in the areas available to reduce the effect of river<br />

water erosion<br />

4 Coastal protection: Sea facing embankments <strong>and</strong> beach protection<br />

to counter the effects of wave dash <strong>and</strong> shoreline recession<br />

5 Shelter belt plantation in the region beyond the sea face to reduce<br />

the energy of the cyclonic storm after l<strong>and</strong>fall<br />

6 Construction of community cyclone/flood shelters at different<br />

locations to serve as refuge to cyclone affected people<br />

7 Construction of community Animal shelters at different locations to<br />

serve as refuge to livestock<br />

8 Construction of road links that may serve to connect regions<br />

presently not properly linked with mainl<strong>and</strong><br />

9 Up gradation of existing road links to improve the connectivity within<br />

the region<br />

10 Construction of new jetties <strong>and</strong> up gradation of the existing ones for<br />

improvement in waterway navigation<br />

3<br />

80<br />

2<br />

245<br />

15<br />

234<br />

167<br />

15<br />

Total 1341


Proposals for Kolkata <strong>and</strong> surrounding urbanized areas<br />

Sl. No. Proposal Amount in<br />

Rs. Crore<br />

1 Construction of pumping systems at different location to rapidly<br />

evacuate accumulated rain water from sudden cyclonic cloudburst;<br />

construction of sluice at mouth of Tolly’s nullah<br />

2 Dredging of final water disposing channel – River Kultigong, which<br />

has reduced in section with time<br />

3 Dredging of the three water conveying channels – Bagjola canal,<br />

Kestopur canal <strong>and</strong> SWF channel<br />

89<br />

50<br />

94<br />

Total 233<br />

Thus, adding up the costs of the two sub-parts of the above recommendations, it is estimated that an<br />

amount of Rs. 1574 Crore is required for mitigating the effect of tropical cyclonic storms in the state<br />

of West Bengal.


References<br />

Kanjilal (2005) “Sunderbans: Its embankments <strong>and</strong> related issues, Commemorative Volume on<br />

Embankments of Sundarbans <strong>and</strong> related issues, Published by the Organising Committee for<br />

Workshop-cum-Seminar on Sundarbans held on July 21, 2005, Kolkata.<br />

Sundarban Statistics (2005) “Eknojorey Sundarban”, in Srikh<strong>and</strong>a Sundarban, Published by<br />

Deep Prakashan, Kolkata.<br />

References<br />

Ashis Kumar Paul (2002) Coastal Geomorphology <strong>and</strong> Environment, Published by ACB<br />

Publications, Kolkata.<br />

Frank, N.L. <strong>and</strong> S.A. Husain (1971): The deadliest Tropical <strong>Cyclone</strong> in History?, Bull. Amer.<br />

Meteor. Soc., 52, 6, 438-444.<br />

Gray, W.M. (1968): Global view of the origin of tropical disturbances <strong>and</strong> storms, Mon. Wea.<br />

Rev., 96, 669-700.<br />

Gupta, A. (1999): Tropical cyclones in the Indian Seas: Observations <strong>and</strong> Prediction, Ph.D.<br />

Thesis, Indian Institute of Technology, New Delhi, India.<br />

Hebert, P.J., Jarrel, J.D. <strong>and</strong> M. Mayfield (1996): The deadliest, costliest <strong>and</strong> most intense U.S.<br />

hurricanes of the century, NOAA, Tech. Memo. NWS TPC-1, 30pp.<br />

Holl<strong>and</strong>, G.J (1993): Global guide to tropical cyclone forecasting, WMO/TD-No. 560, Report<br />

No. TCP-31.<br />

Kalsi, S.R. (2003): Orissa Super Cyclonic <strong>Storm</strong> of 29 October 1999-A Review, India<br />

Meteorological Department.<br />

Smith, D.E (1989): Natural disaster reduction, how meteorological <strong>and</strong> hydrological services<br />

can help, Tech. Report No. 722, WMO.<br />

Southern, R.L. (1991): Global occurrence <strong>and</strong> socio-economic impact of tropical cyclones,<br />

Proc. Workshop on improving warning response <strong>and</strong> mitigation, Asian Disaster Preparedness<br />

Center, Bangkok, Thail<strong>and</strong>, 4.13-4.24.<br />

Southern R.L. (1979): Global socio-economic impact of tropical cyclones. Aust. Meteor. Mag.,<br />

27, 175-195.


Annexure


“……………….Designingadisasterpreparednessplanisimpossiblewithoutknowingtherisk<br />

facinganygivenregion.TheStateofWestBengal,withapproximately290kmsofcoastline,<br />

incurshugelossofhumanlife<strong>and</strong>economicassetsfromTropicalcyclone<strong>and</strong>stormsurge<br />

relatedinundation.Tomitigatetheeconomic<strong>and</strong>socialimpactsofcyclonehazard,Department<br />

ofDisastermanagement,GovernmentofWestBengal,inassociationwithIndianInstituteof<br />

Technology,Kharagpur,hastakenaninitiativetowardspreparationofComprehensiveRisk<br />

Assessment<strong>and</strong>DisasterMitigation Strategies.Amultidisciplinaryapproachhasbeen<br />

atemptedtoaccomplishthiscomplextaskthroughrigorousinteractionofexpertsfromdiverse<br />

backgrounds.Thoughthetaskwhichliesaheadismammothinnature,itisexpectedthatthis<br />

atemptwilbeahumblestepforwardinreducingtheriskofvulnerablecoastalsetlementsfrom<br />

thewrathofnature…………”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!