01.05.2015 Views

Structure and evolution of an active region on the - prace

Structure and evolution of an active region on the - prace

Structure and evolution of an active region on the - prace

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Duckmüller / Aniol, solar eclipse 2006<br />

<str<strong>on</strong>g>Structure</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>an</str<strong>on</strong>g> <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

or<strong>on</strong>al<br />

dynamics<br />

<strong>on</strong> <strong>the</strong> Sun<br />

Hardi Peter<br />

Sven Bingert<br />

Philippe Bourdin<br />

Feng Chen<br />

Max-Pl<str<strong>on</strong>g>an</str<strong>on</strong>g>ck-Institut für<br />

S<strong>on</strong>nensystemforschung<br />

Katlenburg-Lindau<br />

Germ<str<strong>on</strong>g>an</str<strong>on</strong>g>y<br />

http://www.mps.mpg.de/de/projekte/cor<strong>on</strong>al-dynamics/<br />

peter@mps.mpg.de


The cor<strong>on</strong>a <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sun<br />

> 1 000 000 K<br />

visible<br />

surface:<br />

5800 K<br />

How c<str<strong>on</strong>g>an</str<strong>on</strong>g> a cool body<br />

heat its hot surroundings ?!<br />

EUV / X-rays:<br />

plasma at<br />

> 10 6 K<br />

solar eclipse 13.11.2012


25.-27.<br />

May 2013<br />

EUV (17.1 nm)<br />

Fe 8+ ca. 10 6 K<br />

The Sun over two days<br />

SDO / AIA<br />

visible light:<br />

solar surface<br />

with sunspots<br />

SDO / HMI


Cor<strong>on</strong>al structure: mostly cor<strong>on</strong>al loops<br />

AIA 17.1 nm<br />

Fe 8+ – 10 6 K<br />

– what determines <strong>the</strong> structure <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> dynamics ?<br />

– how is <strong>the</strong> cor<strong>on</strong>a heated ?<br />

→ close link between models <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> observati<strong>on</strong>s<br />

11.Feb.2013<br />

02:07:35 UT


B z [Gauss]<br />

Cor<strong>on</strong>al structure: mostly cor<strong>on</strong>al loops<br />

cor<strong>on</strong>a ~10 6 K<br />

AIA 17.1 nm<br />

Fe 8+ – 10 6 K<br />

surface ~6000 K<br />

+500<br />

surface magnetic field<br />

0<br />

–500<br />

11.Feb.2013<br />

02:07:35 UT


Erupti<strong>on</strong> <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> splash-down – “Arschbombe”<br />

3 hours – SDO / AIA 21.1 nm – 2 MK


“Normal” variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cor<strong>on</strong>a<br />

SDO / AIA / NASA<br />

30.Aug.2010<br />

2 hours<br />

SDO / AIA 17.1 nm –<br />

1 MK


The driver at <strong>the</strong> surface I: magneto-c<strong>on</strong>vecti<strong>on</strong><br />

Luc Rouppe v<str<strong>on</strong>g>an</str<strong>on</strong>g> der Voort,<br />

Swedish 1-m Solar Telescope (SST), La Palma<br />

2 Jul. 2010, 396.8 nm<br />

~1 hour<br />

loops in a<br />

stable <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

Earth to scale<br />

45 x 35 Mm 2


The driver at <strong>the</strong> surface II: flux emergence<br />

Cheung & DeRosa (2012)<br />

ApJ 757, 147<br />

B z [Gauss]<br />

magnetogram<br />

~4 days<br />

loop formati<strong>on</strong> in <str<strong>on</strong>g>an</str<strong>on</strong>g><br />

emerging <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

+1000<br />

0<br />

350 x 200 arcsec 2 = 250 x 150 Mm 2<br />

–1000<br />

Earth to scale


model introducti<strong>on</strong><br />

loops in<br />

a stable <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

loop formati<strong>on</strong> in<br />

emerging <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g>


C<strong>on</strong>cept for cor<strong>on</strong>al heating<br />

► horiz<strong>on</strong>tal moti<strong>on</strong>s in photosphere as driver<br />

→ field-line braiding<br />

(Parker 1972, ApJ 174, 499)<br />

→ flux-tube tect<strong>on</strong>ics<br />

(Priest et al 2002, ApJ 576, 533)<br />

► <strong>the</strong>re is some observati<strong>on</strong>al evidence<br />

for field-line braiding<br />

Hi-C rocket<br />

high-resoluti<strong>on</strong> EUV imaging<br />

193 Å – Fe XII – 1.5 MK<br />

field-line<br />

braiding ?


How to c<strong>on</strong>struct a cor<strong>on</strong>a in <strong>the</strong> box…<br />

horiz<strong>on</strong>tal y<br />

► take observed magnetogram:<br />

→ surface magnetic field B 0<br />

surface magnetic field<br />

horiz<strong>on</strong>tal x


How to c<strong>on</strong>struct a cor<strong>on</strong>a in <strong>the</strong> box…<br />

Dutch Open Telescop / P.Sütterlin<br />

► take observed magnetogram:<br />

→ surface magnetic field B 0<br />

► extrapolate B 0 to fill box<br />

assume “1D” atmosphere<br />

► surface c<strong>on</strong>vecti<strong>on</strong>:<br />

gr<str<strong>on</strong>g>an</str<strong>on</strong>g>ulati<strong>on</strong> drives magnetic field<br />

► “fieldline braiding”:<br />

currents induced in cor<strong>on</strong>a<br />

j = (∇x B) / h<br />

surface c<strong>on</strong>vective flow / gr<str<strong>on</strong>g>an</str<strong>on</strong>g>ulati<strong>on</strong>


How to c<strong>on</strong>struct a cor<strong>on</strong>a in <strong>the</strong> box…<br />

Gudiksen & Nordlund (2002) ApJ 572, L113<br />

► take observed magnetogram:<br />

→ surface magnetic field B 0<br />

► extrapolate B 0 to fill box<br />

assume “1D” atmosphere<br />

► surface c<strong>on</strong>vecti<strong>on</strong>:<br />

gr<str<strong>on</strong>g>an</str<strong>on</strong>g>ulati<strong>on</strong> drives magnetic field<br />

histogram <str<strong>on</strong>g>of</str<strong>on</strong>g> currents<br />

Bingert et al (2006)<br />

► “fieldline braiding”:<br />

currents induced in cor<strong>on</strong>a<br />

j = (∇x B) / h<br />

me<str<strong>on</strong>g>an</str<strong>on</strong>g> B 2<br />

current log 10 J 2<br />

heating through Ohmic dissipati<strong>on</strong>:<br />

h j 2 ~ exp(- z/H )<br />

me<str<strong>on</strong>g>an</str<strong>on</strong>g> J 2<br />

loop-structured 10 6 K cor<strong>on</strong>a<br />

vertical z [ Mm]


Magnetohydrodynamics (MHD)


Br<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g>enburg & Dobler (2002)<br />

Comp. Phys. Comm., 147, 471<br />

Pencil code<br />

designed for<br />

compressible turbulent MHD flows<br />

wide r<str<strong>on</strong>g>an</str<strong>on</strong>g>ge <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s<br />

high-order explicit finite difference<br />

high-order Runge-Kutta time stepping<br />

n<strong>on</strong>-equidist<str<strong>on</strong>g>an</str<strong>on</strong>g>t grids<br />

highly modular<br />

extensi<strong>on</strong>s to st<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g>ard MHD<br />

– Spitzer heat c<strong>on</strong>ducti<strong>on</strong><br />

– radiative losses / radiative tr<str<strong>on</strong>g>an</str<strong>on</strong>g>sfer<br />

– particles<br />

– eight moment approximati<strong>on</strong><br />

– …<br />

http://pencil-code.googlecode.com/<br />

freely available<br />

over 100 c<strong>on</strong>tributors world wide<br />

tested <strong>on</strong> m<str<strong>on</strong>g>an</str<strong>on</strong>g>y platforms<br />

large set <str<strong>on</strong>g>of</str<strong>on</strong>g> samples included<br />

Tools for visualizati<strong>on</strong><br />

<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> data <str<strong>on</strong>g>an</str<strong>on</strong>g>alysis<br />

MPI parallelized<br />

scales well<br />

up to more th<str<strong>on</strong>g>an</str<strong>on</strong>g> 80.000 cores<br />

scaling for cor<strong>on</strong>al models<br />

P e n c i l


Model <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> observati<strong>on</strong>s<br />

3D MHD model:<br />

T, r, v, B<br />

syn<strong>the</strong>sized cor<strong>on</strong>al emissi<strong>on</strong> Mg X 625 Å<br />

density cut<br />

10 5 K isosurface<br />

spectral<br />

syn<strong>the</strong>sis<br />

photospheric<br />

magnetic field<br />

intensity map (inv.)<br />

Doppler map<br />

Bingert & hp (2011) A&A 530, A112<br />

hp (2010) A&A 521, A51<br />

compare<br />

real observati<strong>on</strong>s<br />

comparis<strong>on</strong><br />

Hinode / EIS Fe XV 284 Å<br />

160”x125”


model introducti<strong>on</strong><br />

loops in<br />

a stable <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

loop formati<strong>on</strong> in<br />

emerging <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g>


A <strong>on</strong>e-to-<strong>on</strong>e <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g> model<br />

Bourdin, Bingert, hp (2013)<br />

Hinode/SOT magnetogram<br />

– 14.Nov.2007, 12:15-18:00 UT<br />

– time-series: 90 s cadence<br />

EIS / Hinode raster sc<str<strong>on</strong>g>an</str<strong>on</strong>g><br />

– covering similar FOV<br />

– acquired during same time frame<br />

– full spectral pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> m<str<strong>on</strong>g>an</str<strong>on</strong>g>y lines<br />

e.g. Fe XV (284 Å)


Bourdin, Bingert, hp (2013)<br />

A <strong>on</strong>e-to-<strong>on</strong>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>an</str<strong>on</strong>g> “old” <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

3D MHD numerical model<br />

– 235 x 235 x 156 Mm 3 → full <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

– 1024 x 1024 x 256 grid points<br />

– driven by observed velocities<br />

<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> observed photospheric magnetogram<br />

– r<str<strong>on</strong>g>an</str<strong>on</strong>g> <strong>on</strong> Curie <strong>on</strong> typically 4000 cores<br />

– ca. 8 M core hrs<br />

post processing:<br />

– syn<strong>the</strong>size emissi<strong>on</strong><br />

– spectral line syn<strong>the</strong>sis<br />

– field-line <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

EIS / Fe XV 284 Å<br />

observati<strong>on</strong>s: EIS / Fe XV 284 Å<br />

► cor<strong>on</strong>al loops<br />

form above<br />

well developed<br />

<str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

P e n c i l<br />

model: syn<strong>the</strong>sized Fe XV 284 Å


Model <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> observati<strong>on</strong>: intensity & Doppler shift<br />

Bourdin, Bingert, hp (2013)<br />

► reproduces hot core<br />

► <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g> loops<br />

are in right places<br />

► less clear agreement<br />

in Doppler shifts<br />

► large loop<br />

does not show in full<br />

(more time<br />

would be needed)


Comparis<strong>on</strong> to stereoscopic observati<strong>on</strong>s<br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed loops<br />

determined by<br />

stereoscopic rec<strong>on</strong>structi<strong>on</strong><br />

match central field line<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> loops in model !


model introducti<strong>on</strong><br />

loops in<br />

a stable <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g><br />

loop formati<strong>on</strong> in<br />

emerging <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g>


Cor<strong>on</strong>al model driven by emerging flux simulati<strong>on</strong><br />

flux-emergence simulati<strong>on</strong><br />

(Cheung et al. 2010, ApJ 720, 233)<br />

– magnetic flux rope rises from bottom<br />

<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> breaks through surface<br />

Origin <str<strong>on</strong>g>of</str<strong>on</strong>g> sunspots<br />

9<br />

→ formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sunspot pair<br />

→ limited to interior <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> surface<br />

•Form<br />

sun


Chen, Bingert, hp, Schüssler<br />

Camer<strong>on</strong>, Cheung (2013)<br />

Cor<strong>on</strong>al model driven by emerging flux simulati<strong>on</strong><br />

our<br />

cor<strong>on</strong>al<br />

model<br />

interior<br />

model<br />

cor<strong>on</strong>al simulati<strong>on</strong>:<br />

– use photospheric layer (T, r, v, B)<br />

as time-dependent lower boundary<br />

→ magnetic field exp<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g>s<br />

→ cor<strong>on</strong>al loops form<br />

P e n c i l<br />

3D MHD numerical model<br />

– 1024 x 512 x 512 grid points<br />

– temporal <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> over 10 hours<br />

– runs <strong>on</strong> SuperMUC ~ 7 M core hrs<br />

– using 4000 cores<br />

post processing:<br />

– syn<strong>the</strong>tic<br />

cor<strong>on</strong>al emissi<strong>on</strong><br />

– field-line tracing<br />

23.0 hr<br />

25.2 hr<br />

27.2 hr


DN / pix / s B z [G]<br />

Cor<strong>on</strong>al model driven by emerging flux simulati<strong>on</strong><br />

syn<strong>the</strong>sized cor<strong>on</strong>al emissi<strong>on</strong> (1.5 10 6 K )<br />

► loops form at different places<br />

at different times<br />

► loop footpoints are in<br />

sunspot periphery (penumbra)<br />

view from top: B vert @ bottom + AIA 193 Å<br />

+3000<br />

0<br />

► loop fragments<br />

view from side: AIA 193 Å<br />

146 x 73 Mm 2<br />

–3000<br />

1000<br />

100<br />

10<br />

34 min<br />

out <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 hrs<br />

Chen, Bingert, hp, Schüssler, Camer<strong>on</strong>, Cheung (2013)<br />

1


Cor<strong>on</strong>al model driven by emerging flux simulati<strong>on</strong><br />

P [ 10 6 W/m 2 ]<br />

count rate [ DN / pix / s ]<br />

► loops form at different places<br />

at different times<br />

► loop footpoints are in<br />

sunspot periphery (penumbra)<br />

► loop fragments<br />

► EUV loops form through<br />

increased heating:<br />

higher Poynting flux @ loop feet<br />

cor<strong>on</strong>al emissi<strong>on</strong> from top: AIA 193 Å<br />

vertical Poynting flux at bottom<br />

146 x 73 Mm 2<br />

1000<br />

100<br />

10<br />

1<br />

+10<br />

0<br />

Chen, Bingert, hp, Schüssler, Camer<strong>on</strong>, Cheung (2013)<br />

–5


Cor<strong>on</strong>al model driven by emerging flux simulati<strong>on</strong><br />

count rate [ DN / pix / s ]<br />

► loops form at different places<br />

at different times<br />

► loop footpoints are in<br />

sunspot periphery (penumbra)<br />

► loop fragments<br />

► EUV loops form through<br />

increased heating:<br />

higher Poynting flux @ loop feet<br />

► loop footpoints where<br />

str<strong>on</strong>gest stretching <str<strong>on</strong>g>of</str<strong>on</strong>g> B<br />

→ field-line braiding<br />

flux-tube tect<strong>on</strong>ics<br />

at work !<br />

cor<strong>on</strong>al emissi<strong>on</strong> from top: AIA 193 Å<br />

146 x 73 Mm 2<br />

horiz<strong>on</strong>tal stretching <str<strong>on</strong>g>of</str<strong>on</strong>g> B at bottom<br />

1000<br />

100<br />

| (B ∙∇) v | horiz. [G/s]<br />

Chen, Bingert, hp, Schüssler, Camer<strong>on</strong>, Cheung (2013)<br />

10<br />

1<br />

3<br />

2<br />

1<br />

0


Fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cor<strong>on</strong>al structures<br />

observati<strong>on</strong><br />

our model (top view)<br />

146 x 73 Mm 2<br />

10 min<br />

later<br />

AIA 193 emissi<strong>on</strong>


C<strong>on</strong>clusi<strong>on</strong>s<br />

► field line braiding provides<br />

proper spatial <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> temporal distributi<strong>on</strong><br />

to heat <strong>the</strong> cor<strong>on</strong>a <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> drive its dynamics<br />

→ matching structures in model <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> observati<strong>on</strong>s<br />

→ underst<str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g>ing loop formati<strong>on</strong><br />

→ <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> m<str<strong>on</strong>g>an</str<strong>on</strong>g>y more... (Doppler shifts, variability, …)<br />

► HPC is pivotal<br />

to capture spatial <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> temporal complexity<br />

→ numerical experiments to test model ideas<br />

→ reveals which processes are at work<br />

► next steps<br />

→ more realistic match <str<strong>on</strong>g>of</str<strong>on</strong>g> individual structures<br />

→ investigate parameterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat input<br />

→ investigate different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> activity (→ o<strong>the</strong>r stars)<br />

► new opportunities for comparis<strong>on</strong> to observati<strong>on</strong>s<br />

IRIS / NASA – Solar Orbiter / ESA – Solar-C / JAXA<br />

<str<strong>on</strong>g>Structure</str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>an</str<strong>on</strong>g>d</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>an</str<strong>on</strong>g> <str<strong>on</strong>g>active</str<strong>on</strong>g> <str<strong>on</strong>g>regi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Sun


Beware <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m<strong>on</strong>ster !!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!