30.04.2015 Views

project-atlas-lucid Site - CERN

project-atlas-lucid Site - CERN

project-atlas-lucid Site - CERN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00000000000000000000000<br />

11111111111111111111111<br />

00 11<br />

00 11<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

0000 1111<br />

1111 0000<br />

0000 1111<br />

Report from the luminosity<br />

measurement taskforce<br />

WLS fibers<br />

16 Plastic<br />

Scintillators<br />

MBTS<br />

EMEC<br />

Moderator shielding<br />

FCAL<br />

Pump<br />

HEC<br />

(front)<br />

ZDC<br />

HEC<br />

(back)<br />

FCal 1 FCal 2 FCal 3<br />

(EM) (Had) (Had)<br />

LAr Calorimeter<br />

shielding plug<br />

TAS<br />

BCM<br />

LUCID<br />

ZDC<br />

140 m<br />

237 m<br />

ALFA<br />

http://<strong>project</strong>-<strong>atlas</strong>-<strong>lucid</strong>.web.cern.ch/<strong>project</strong>-<strong>atlas</strong>-<strong>lucid</strong>/taskforce/main.html


ATLAS<br />

The basic principle<br />

ATLAS<br />

The luminosity (L) can be calculated from the rate of all inelastic interactions (R in )<br />

and the total inelastic cross section ( in ) by using the simple relation:<br />

L = R in<br />

in<br />

The inelastic interaction rate is given by the average number of inelastic interactions<br />

per bunch crossing () and the bunch crossing rate (f BX ):<br />

R in = x f BX = x<br />

The Number of filled Bunch crossings<br />

3564<br />

x 40 MHz<br />

Conclusion: To provide a luminosity the detector must estimate correctly<br />

from a measured rate and the inelastic cross section has to be known.<br />

V. Hedberg Luminosity Working Group 03.12.2009 2


ATLAS<br />

The inelastic cross section<br />

ATLAS<br />

Predicted cross section in mb from Phojet 1.12 and Pythia 6.420<br />

14 TeV:<br />

Phojet Pythia<br />

Inelastic 83.1 79.3<br />

Elastic 34.4 22.2<br />

Total 117.5 101.5<br />

10 TeV:<br />

Phojet Pythia<br />

Inelastic 79.8 75.3<br />

Elastic 32.0 20.8<br />

Total 111.8 96.1<br />

Phojet Pythia<br />

Non diff. 68.0 (82%) 54.7 (69%)<br />

Double diff. 4.1 (5%) 10.3 (13%)<br />

Single diff. 11.0 (13%) 14.3 (18%)<br />

Phojet Pythia<br />

Non diff. 64.9 (81%) 51.6 (68%)<br />

Double diff. 4.0 (5%) 9.8 (13%)<br />

Single diff. 10.8 (14%) 14.0 (19%)<br />

}<br />

}<br />

Phojet Pythia<br />

Minimum bias 72.1 65.0<br />

Phojet Pythia<br />

Minimum bias 68.9 61.3<br />

0.9 TeV:<br />

Phojet Pythia<br />

Inelastic 54.0 52.5<br />

Elastic 14.1 12.8<br />

Total 68.1 65.3<br />

Phojet Pythia<br />

Non diff. 40.0 (74%) 34.4 (66%)<br />

Double diff. 3.5 (7%) 6.4 (12%)<br />

Phojet Pythia<br />

Minimum bias 43.5 40.8<br />

Single diff. 10.5 (19%) 11.7 (22%)<br />

(Note: double pomeron processes were not included in PHOJET cross sections).<br />

}<br />

V. Hedberg Luminosity Working Group 03.12.2009 3


ATLAS<br />

Measuring <br />

ATLAS<br />

The average number of interactions per bunch crossing () is estimated from<br />

a rate measured by the detectors.<br />

The measured rate that is used to estimate can be of three main types:<br />

1) Event rate<br />

2) Hit rate<br />

3) Particle rate<br />

The different detectors measure different quantities while requiring different<br />

combinations of signals in the two detectors. This lead to a long list of different<br />

luminosity methods.<br />

V. Hedberg Luminosity Working Group 03.12.2009 4


I<br />

Type of events<br />

A C<br />

Hits = 0 Hits = 0<br />

Measured<br />

quantity<br />

EVENTS<br />

BCM<br />

MBTS<br />

LUCID<br />

Name<br />

ZERO COUNTING - AND<br />

II<br />

Hits = 0 Hits = 0<br />

Hits 1<br />

Hits = 0<br />

EVENTS<br />

MBTS<br />

LUCID<br />

ZERO COUNTING - OR<br />

III<br />

Hits = 0 Hits 1<br />

Hits 1 Hits 1<br />

EVENTS<br />

HITS<br />

BCM<br />

ZDC<br />

MBTS<br />

LUCID<br />

EVENT COUNTING - AND<br />

HIT COUNTING - AND<br />

PART.<br />

FCAL<br />

PARTICLE COUNTING - AND<br />

IV<br />

Hits 1 Hits 1<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

EVENTS<br />

HITS<br />

Not used<br />

MBTS<br />

LUCID<br />

EVENT COUNTING - OR<br />

HIT COUNTING - OR<br />

V<br />

Hits 1<br />

Hits = 0<br />

EVENTS<br />

HITS<br />

BCM<br />

Not used<br />

EVENT COUNTING - XOR SIDE A<br />

HIT COUNTING - XOR SIDE A<br />

VI<br />

Hits = 0 Hits 1<br />

EVENTS<br />

HITS<br />

BCM<br />

Not used<br />

EVENT COUNTING - XOR SIDE C<br />

HIT COUNTING - XOR SIDE C<br />

VII<br />

Hits 1 Hits 1<br />

Hits 1<br />

Hits = 0<br />

EVENTS<br />

PART.<br />

ZDC<br />

FCAL<br />

EVENT COUNTING - OR SIDE A<br />

PARTICLE COUNTING - OR SIDE A<br />

VIII<br />

Hits 1 Hits 1<br />

Hits = 0 Hits 1<br />

EVENTS<br />

PART.<br />

ZDC<br />

FCAL<br />

EVENT COUNTING - OR SIDE C<br />

PARTICLE COUNTING - OR SIDE C


ATLAS<br />

Measuring by particle counting<br />

ATLAS<br />

If a true number of particles is counted in the detectors without any requirement on<br />

a minimum number of particles then<br />

N<br />

part/BX<br />

= =<br />

N part/pp<br />

The average number of detected particles per bunch crossing<br />

The average number of detected particles per inelastic pp interaction<br />

The average number of detected particles per inelastic pp interaction (N part/pp )<br />

has to be obtained from simulations or from a reference data sample recorded at<br />

low luminosity (low ).<br />

Another possibility is to measure the luminosity with for example ALFA and calibrate<br />

the detector:<br />

ALFA<br />

f BX<br />

L =<br />

in<br />

x N part/BX<br />

N part/pp<br />

in<br />

x N part/pp =<br />

L<br />

N part/BX<br />

<br />

x<br />

fBX<br />

Detector<br />

V. Hedberg Luminosity Working Group 03.12.2009 6


ATLAS<br />

Particle counting with coincidence<br />

ATLAS<br />

In order to reduce background it is an advantage to do particle counting while requiring at<br />

least one particle in each detector. In this case is no longer proportional to N part/BX .<br />

If only events with particles in both detectors are used then the relationship between<br />

N part/bx and becomes:<br />

N<br />

Coinc<br />

part/BX N part/pp<br />

-<br />

<br />

e<br />

C<br />

A<br />

N part/pp N Coinc<br />

C<br />

+ part/pp N part/pp<br />

-<br />

+ <br />

Coinc<br />

N part/pp<br />

<br />

e<br />

A<br />

<br />

5 parameters needed to describe the dependence on <br />

What is needed is as a function of N part/BX i.e. = f(Npart/BX) but the expression<br />

above cannot be inverted analytically.<br />

V. Hedberg Luminosity Working Group 03.12.2009 7


ATLAS<br />

Measuring by hit counting<br />

ATLAS<br />

Most detectors do not measure particles. If hits are measured instead without<br />

any requirement on a minimum number of hits in each detector there is no longer<br />

a linear relationship between and N hits/BX :<br />

N hits/BX<br />

=<br />

N tubes<br />

N hits/pp <br />

[ 1 - ( 1- ) ] N hits/pp for


ATLAS<br />

Hit counting with coincidence<br />

ATLAS<br />

In order to reduce background it is an advantage to do also hit counting while requiring<br />

at least one particle in each detector.<br />

The relationship between the number of hits and particles:<br />

N part = - N tubes x<br />

N hits<br />

ln ( 1- )<br />

N tubes<br />

can be used together with the relationship between and the number of particles<br />

N part/BX<br />

<br />

A<br />

N part/pp<br />

<br />

e<br />

A<br />

<br />

Coinc<br />

N part/pp<br />

<br />

2e<br />

A<br />

if<br />

A<br />

N part/pp<br />

<br />

C<br />

N part/pp<br />

and<br />

A <br />

C<br />

to obtain a relationship between N hits and :<br />

N hits = N tubes[1 - e<br />

<br />

A<br />

N part/pp<br />

<br />

e<br />

A Coinc<br />

N part/pp N 2e A<br />

] tubes<br />

However, there is no way of analytically express as a function of N hits in this case !<br />

V. Hedberg Luminosity Working Group 03.12.2009 9


ATLAS<br />

Hit counting - AND versus OR<br />

ATLAS<br />

AND<br />

N hits = N <br />

tubes[1-e<br />

OR<br />

N hits/BX<br />

<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

A<br />

N part/pp<br />

HitcountingAND<br />

HitcountingOR<br />

LUCID<br />

A Coinc<br />

e N part/pp N 2e A<br />

tubes ]<br />

<br />

= N tubes [ 1 - ]<br />

( 1- N hits/pp N tubes )<br />

13% Difference<br />

70% Difference<br />

1% Difference<br />

0 5 10 15 20 25<br />

N hits/BX<br />

The dependence of on N hits is only linear for small .<br />

The largest difference between AND and OR is at low <br />

N hits/BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 10<br />

<br />

<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

06 0,6<br />

0,4<br />

0,2<br />

0,16<br />

0,14<br />

0,12<br />

0,1<br />

0,08<br />

0,06 006<br />

0,04<br />

0,02<br />

0<br />

0<br />

HitcountingAND<br />

HitcountingOR<br />

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6<br />

HitcountingAND<br />

HitcountingOR<br />

N hits/BX<br />

OR<br />

sing<br />

N hits/BX N hits/pp<br />

AND<br />

coinc<br />

N hits/BX N hits/pp<br />

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16


ATLAS<br />

Hit counting - linear extrapolation<br />

ATLAS<br />

AND<br />

N hits = N <br />

tubes[1-e<br />

AND<br />

coinc<br />

N hits/BX N hits/pp<br />

<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

A<br />

N part/pp<br />

A Coinc<br />

e N part/pp N 2e A<br />

tubes ]<br />

Hitcounting<br />

AND<br />

Hitcounting<br />

Linear<br />

0 5 10 15 20 25<br />

N hits/BX<br />

<br />

<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

04 0,4<br />

0,2<br />

0<br />

0,16<br />

0,14<br />

0,12<br />

0,1<br />

0,08<br />

0,06<br />

0,04 004<br />

0,02<br />

0<br />

HitcountingAND<br />

HitcountingLinear<br />

0 0,2 0,4 0,6 0,8 1 1,2<br />

N hits/BX<br />

HitcountingAND<br />

Hitcountinglinear<br />

0 0,02 0,04 0,06 0,08<br />

N hits/BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 11


ATLAS<br />

Event counting<br />

ATLAS<br />

The simplest quantity to measure is the number of events per bunch crossing.<br />

Different requirements can be made on the signals seen in the two detectors<br />

and different system uses different requirement.<br />

Some of these event topologies are not independent with respect to each other.<br />

Probability( Zero-counting-AND ) = 1 - Probability( Event-counting-OR)<br />

Probability( Zero-counting-OR ) = 1 - Probability( Event-counting-AND)<br />

It is possible to calculate the probability (rate) of any event topology at any <br />

if three basic parameters ( 0 , 1 and 2 ), that describe the probability when there<br />

is one pp interaction, are known.<br />

A problem with event counting is that at high the event rate tends to saturate<br />

and an increase in does then not give a significant increase in the event rate.<br />

V. Hedberg Luminosity Working Group 03.12.2009 12


ATLAS<br />

Event counting<br />

ATLAS<br />

Name<br />

Event type<br />

ZERO COUNTING - AND Hits = 0 Hits 0<br />

EVENT COUNTING - XOR - A Hits 1 Hits = 0<br />

EVENT COUNTING - XOR - C Hits = 0 Hits 1<br />

EVENT COUNTING - AND Hits 1 Hits 1<br />

Propability for 1 pp<br />

0 = 1- 1 - 2 - 3<br />

= e ( 0 -1)<br />

1 = A - coinc<br />

2 = C - coinc<br />

e( 0 + 1 -1)<br />

-<br />

e -<br />

( 0-1)<br />

- -<br />

e ( 0 + 2-1)<br />

e ( 0-1)<br />

3 = coinc<br />

Probability for interactions<br />

(<br />

e 0 + 2 -1)<br />

+e<br />

( 0 -1)<br />

1- e ( 0 + 1-1)<br />

-<br />

EVENT COUNTING - OR<br />

Hits 1 Hits 1<br />

Hits 1 Hits = 0<br />

Hits = 0 Hits 1<br />

sing = 1 - 0<br />

1-e ( 0 -1) -<br />

ZERO COUNTING - OR<br />

Hits = 0 Hits = 0<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

-<br />

e ( 0+ 1 -1)<br />

+<br />

(<br />

e 0 + 2 -1)<br />

-e<br />

( 0 -1)<br />

EVENT COUNTING - OR - A<br />

Hits 1 Hits 1<br />

Hits 1 Hits = 0<br />

A = 1 - 0 - 2<br />

1- e ( 0 + 2-1)<br />

EVENT COUNTING - OR - C<br />

Hits 1 Hits 1<br />

Hits = 0 Hits 1<br />

C = 1 - 0 - 1<br />

1- e ( 0 + 1-1)<br />

V. Hedberg Luminosity Working Group 03.12.2009 13


ATLAS<br />

Event counting<br />

ATLAS<br />

Efficiencies for one pp interaction at 14 TeV<br />

A C<br />

0<br />

Hits = 0 Hits = 0<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

Hits 1 Hits 1<br />

1<br />

= 0.442<br />

= 0.212<br />

= 0.212<br />

3 = 0.135<br />

2<br />

LUCID BCM MBTS<br />

0.711<br />

0.125<br />

0.125<br />

0.040<br />

0<br />

0.004<br />

0.004<br />

0.992<br />

ZDC<br />

0.472<br />

0.215<br />

0.215<br />

0.098<br />

sing = 1 - 0 = 0.559 0.290 1.000<br />

= A 1 - 0 - 2<br />

= C 1 - 0 - 1<br />

LUCID BCM MBTS ZDC<br />

= 0.347 0.165<br />

= 0.347 0.165<br />

0.528<br />

0.998 0.313<br />

0.998 0.313<br />

coinc =1- 0 - 1 - 2 = 0.135 0.040 0.992 0.098<br />

LUCID: GEANT3 + PHOJET (non-diff + diff, 16 + 16 tubes, cut = 50 p.e. )<br />

BCM: GEANT4 + PYTHIA (non-diff + diff, 4 + 4 modules )<br />

MBTS: GEANT4 + PYTHIA (only non-diff, 16 + 16 sectors, cut = 40 mV )<br />

ZDC: ATL-LUM-INT-2009-002, A = C = coinc<br />

V. Hedberg Luminosity Working Group 03.12.2009 14


ATLAS<br />

Event versus hit counting<br />

ATLAS<br />

<br />

30<br />

28<br />

OR<br />

N events/BX =<br />

1-e - sing<br />

Event counting OR<br />

OR<br />

N hits/BX<br />

<br />

30<br />

28<br />

g<br />

Hit counting OR<br />

<br />

= N tubes [ 1 - ( 1- N hits/pp N tubes ) ]<br />

26<br />

24<br />

22<br />

LUCID<br />

MBTS<br />

BCM<br />

ZDC<br />

26<br />

24<br />

22<br />

LUCID<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Saturation<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

N events/BX<br />

N hits/BX<br />

Conclusions:<br />

Hit counting suffers less from saturation than event counting.<br />

A small acceptance gives less saturation (but less statistics)<br />

V. Hedberg Luminosity Working Group 03.12.2009 15


ATLAS<br />

Event counting - AND versus OR<br />

ATLAS<br />

N Events<br />

AND<br />

N events/BX = 1-e - A -<br />

OR<br />

N events/BX =<br />

1-e - sing<br />

<br />

e C -<br />

+e sing <br />

<br />

20<br />

15<br />

OR<br />

AND<br />

LUCID<br />

N BX<br />

1,2<br />

1<br />

LUCID<br />

inverted<br />

10<br />

5<br />

0,8<br />

0,6<br />

0,4 04<br />

0,2<br />

0<br />

OR<br />

0 5 10 15 20<br />

Conclusions:<br />

OR counting saturates before AND counting<br />

OR counting is described by 1 parameter<br />

AND counting is described by 3 parameters<br />

If


ATLAS<br />

Zero counting - AND versus OR<br />

ATLAS<br />

N Zero<br />

N BX<br />

1<br />

0,8<br />

OR<br />

N zero/BX = e - A +<br />

AND<br />

N events/BX =<br />

LUCID<br />

e - sing<br />

<br />

e C -<br />

-e sing <br />

OR AND<br />

<br />

inverted<br />

20<br />

15<br />

10<br />

5<br />

LUCID<br />

OR AND<br />

AND OR<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 5 10 15 20<br />

Conclusions:<br />

AND counting saturates before OR counting<br />

AND counting is described by 1 parameter<br />

OR counting is described by 3 parameters<br />

If


ATLAS<br />

Zero counting - linear extrapolation<br />

ATLAS<br />

Compare Zero-OR counting with a<br />

linear extrapolation from the low<br />

limit:<br />

OR<br />

N zero/BX = e - A +<br />

OR<br />

N zero/BX =<br />

1-<br />

Coin <br />

<br />

e C -<br />

-e sing <br />

<br />

20<br />

18<br />

16<br />

14<br />

12<br />

ORlinear<br />

OR<br />

<br />

4<br />

3,5<br />

3<br />

2,5<br />

ORlinear<br />

OR<br />

14% difference<br />

10<br />

2<br />

8<br />

1,5<br />

6<br />

1<br />

4<br />

2<br />

0,5<br />

3% difference<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

N zero/BX<br />

0<br />

0,5 0,6 0,7 0,8 0,9 1<br />

N zero/BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 18


ATLAS<br />

Zero counting - more extrapolation<br />

ATLAS<br />

Compare Zero-OR counting with a<br />

linear extrapolation from the low<br />

limit and an exponential extrapolation:<br />

<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

ORlinear<br />

OR<br />

ORln<br />

OR<br />

N zero/BX = e - A +<br />

OR<br />

N zero/BX = e - Coin <br />

OR<br />

N zero/BX =<br />

<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1-<br />

Coin <br />

<br />

e C -<br />

-e sing <br />

ORlinear<br />

OR<br />

ORln<br />

4<br />

1,5<br />

2<br />

1<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

0,5<br />

N zero/BX<br />

0<br />

0,5 0,6 0,7 0,8 0,9 1<br />

N zero/BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 19


ATLAS<br />

Migration<br />

ATLAS<br />

6<br />

10<br />

5<br />

10<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

PMT<br />

Entries 640000<br />

Mean 3.08<br />

RMS 14.8<br />

Underflow 0<br />

Overflow 36<br />

Cut<br />

GAS<br />

Entries 640000<br />

Mean 3.16<br />

RMS 14.8<br />

Underflow 0<br />

Overflow 48<br />

PMT+GAS<br />

Entries 640000<br />

Mean 6.07<br />

RMS 24.1<br />

Underflow 0<br />

Overflow 244<br />

Primaries<br />

Entries 640000<br />

Mean 0.633<br />

RMS 8.07<br />

Underflow 0<br />

Overflow 34<br />

μ = 1.00<br />

PMT<br />

GAS<br />

PMT+GAS<br />

Primaries<br />

3<br />

10<br />

2<br />

10<br />

PMT<br />

Entries 25600<br />

Mean 76.2<br />

RMS 71.7<br />

Underflow 0<br />

Overflow 62<br />

Cut<br />

GAS<br />

Entries 25600<br />

Mean 78<br />

RMS 70.8<br />

Underflow 0<br />

Overflow 78<br />

PMT+GAS<br />

Entries 25600<br />

Mean 144<br />

RMS 105<br />

Underflow 0<br />

Overflow 662<br />

Primaries<br />

Entries 25600<br />

Mean 15.8<br />

RMS 39.2<br />

Underflow 0<br />

Overflow 41<br />

μ = 25.00<br />

PMT<br />

GAS<br />

PMT+GAS<br />

Primaries<br />

10<br />

1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

p.e./tube/event<br />

Migration:<br />

When events are piled up at large ,<br />

particles that give a small signal combines<br />

with other small signals to give a hit above<br />

the threshold.<br />

The effect in LUCID is large<br />

- 1)[%]<br />

true<br />

/μ<br />

meas<br />

(μ<br />

10<br />

0 50 100 150 200 250 300 350 400 450 500<br />

p.e./tube/event<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

true<br />

Hit Counting (coincidence)<br />

True<br />

Thr = 40 p.e.<br />

Thr = 50 p.e.<br />

Thr = 60 p.e.<br />

Thr = 70 p.e.<br />

inel<br />

B<br />

10<br />

10 1 10<br />

V. Hedberg Luminosity Working Group 03.12.2009 μ = σ inel 20 × L B<br />

-2<br />

-1<br />

true


ATLAS<br />

The Beam Condition Monitor<br />

ATLAS<br />

The BCM has four modules on each side.<br />

2+2 modules are at present read out<br />

separately from the other 2+2 modules.<br />

The detector will do event counting and<br />

not hit counting. Since the detector<br />

read-out is split in two one can make<br />

two independent measurements for each<br />

methods.<br />

Zero-counting-AND:<br />

=<br />

N 00<br />

ln ( )<br />

N BX<br />

0 -1<br />

- C - A - sing<br />

Function tested<br />

with MC data:<br />

BCM detector<br />

modules<br />

Function<br />

inverted:<br />

YES YES<br />

Event-counting-AND:<br />

N AND ( 0 + 1 -1)<br />

= 1-e (0 +<br />

-e<br />

2 -1)<br />

+e<br />

( 0 -1)<br />

N BX<br />

YES NO<br />

Event-counting-XOR Side A:<br />

N A ( 0 + 1 -1) ( 0 -1)<br />

= e -e<br />

N BX<br />

N C ( 0 + 2 -1) ( 0 -1)<br />

Event-counting-XOR Side C: = e -e<br />

N BX<br />

NO NO<br />

NO NO<br />

V. Hedberg Luminosity Working Group 03.12.2009 21


ATLAS<br />

The Beam Condition Monitor<br />

ATLAS<br />

The BCM has so far only been studied with 14 TeV PYTHIA/GEANT4 events and assuming<br />

a read-out of 4 modules on each side.<br />

Efficiency<br />

A C<br />

Hits = 0 Hits = 0<br />

0<br />

= 0.711<br />

Hits 1 Hits = 0<br />

1 = 0.125<br />

Hits = 0 Hits 1<br />

2<br />

= 0.125<br />

Hits 1 Hits 1<br />

3<br />

= 0.040<br />

Event-counting-AND:<br />

N AND ( 0 + 1 -1)<br />

= 1-e (0 +<br />

-e<br />

2 -1)<br />

+e<br />

( 0 -1)<br />

N BX<br />

N AND<br />

N 00<br />

1-<br />

N BX<br />

N BX<br />

Zero-counting-AND:<br />

N 00<br />

1- = 1- e<br />

N BX<br />

( 0 -1)<br />

V. Hedberg Luminosity Working Group 03.12.2009 22


ATLAS<br />

The Beam Condition Monitor<br />

ATLAS<br />

What needs to be done ?<br />

The Event-Counting-AND formula needs to be inverted.<br />

The Event-Counting-XOR formula needs to be tested with simulated events and<br />

inverted (perhaps inclusive OR would be easier ?)<br />

The efficiencies needs to be calculated at lower energies than 14 TeV.<br />

V. Hedberg Luminosity Working Group 03.12.2009 23


ATLAS<br />

The Zero Degree Calorimeter<br />

ATLAS<br />

The ZDC has two calorimeters that will<br />

measure the total energy. A cut will be made<br />

on this energy and three rates will be<br />

measured:<br />

Zero Degree Calorimeter<br />

32 ch<br />

3+3ch<br />

PMT<br />

Had. mod.<br />

32+1 chs<br />

PMT<br />

Had. mod.<br />

1 chs<br />

PMT<br />

Had. mod.<br />

1 chs<br />

LHCf<br />

Ionization<br />

chamber<br />

ZDC12Rate: Inclusive single rate on Side 12<br />

ZDC81Rate: Inclusive single rate on Side 81<br />

4+4 ch<br />

96 ch<br />

PMT<br />

32 ch<br />

PMT<br />

PMT<br />

PMT<br />

ZDCcoincRate: Coincidence rate<br />

EM mod.<br />

96+1 chs<br />

Had. mod.<br />

32+1 chs<br />

Had. mod.<br />

1 chs<br />

Had. mod.<br />

1 chs<br />

Ionization<br />

chamber<br />

The methods that will be used are:<br />

Event-counting-AND:<br />

N AND ( 0 + 1 -1)<br />

= 1-e (0 +<br />

-e<br />

2 -1)<br />

+e<br />

( 0 -1)<br />

N BX<br />

=<br />

ZDCcoincRate<br />

BX rate<br />

Event-counting-OR Side A:<br />

Event-counting-OR Side C:<br />

N A<br />

N BX<br />

=<br />

N C<br />

N BX<br />

=<br />

1- e ( 0 + 2-1)<br />

1- e ( 0+ 1 -1)<br />

ZDC12Rate<br />

BX rate<br />

ZDC81Rate<br />

BX rate<br />

V. Hedberg Luminosity Working Group 03.12.2009 24<br />

=<br />

=<br />

=<br />

=<br />

ZDC12Rate<br />

ln(1- )<br />

BX rate<br />

0 + 2 -1<br />

ZDC81Rate<br />

ln(1- )<br />

BX rate<br />

0 + 1 -1


ATLAS<br />

The Zero Degree Calorimeter<br />

ATLAS<br />

Double Arm Acceptance<br />

ZDC performance at Low Energy, neutron yield¥acceptance<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

ATL-LUM-INT-2009-002<br />

0.00<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

LHC Beam EnergyHGeVL<br />

<br />

20<br />

15<br />

10<br />

5<br />

ZDCOR<br />

ZDCAND<br />

Assumptions:<br />

coinc = 0.10<br />

A = C = coinc = 0.31<br />

What about migration ? Accidentals ?<br />

A simulation is needed !<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

N events/BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 25


ATLAS<br />

The Zero Degree Calorimeter<br />

ATLAS<br />

What needs to be done ?<br />

A simulation of the detector is badly needed.<br />

The probability functions have to be tested with simulated data.<br />

Functions for = f(ZDC rate) have to be constructed at various energies.<br />

V. Hedberg Luminosity Working Group 03.12.2009 26


ATLAS<br />

LUCID<br />

ATLAS<br />

LUCID has 15 working Cherenkov<br />

tubes in each detector.<br />

The signals are discriminated and<br />

provide a hit pattern that are<br />

used to do four measurements.<br />

Zero-counting-AND, Zero-counting-OR, Hit-counting-AND, Hit-counting-OR.<br />

Monte Carlo studies have shown that none of the probability functions describe the<br />

Monte Carlo data sufficiently well. The reason for this is migration which cannot be<br />

described in these functions.<br />

LUCID plots as a function of the probability (P) of events or hits and fit a polynomial<br />

function so that can be expressed as<br />

N<br />

= p 0<br />

0 + p 1 P + p 2 P 2 + p 3 P 3 where P = or or and p 0 , p 1 , p 3<br />

N BX<br />

N 00<br />

N BX<br />

N hits<br />

N BX<br />

are constants.<br />

Sometimes the fit is done in two regions of P in order to get a good agreement between<br />

the fit and the Monte Carlo data.<br />

V. Hedberg Luminosity Working Group 03.12.2009 27


ATLAS<br />

LUCID 900 GeV<br />

ATLAS<br />

Zero counting (OR)<br />

Zero counting g( (AND)<br />

P 0 > 0.75<br />

P 0 >0.25<br />

P 0


ATLAS<br />

LUCID 900 GeV<br />

ATLAS<br />

Hit counting g( (OR)<br />

Hit counting (AND)<br />

N hits < 0.7<br />

N hits >0.7<br />

V. Hedberg Luminosity Working Group 03.12.2009 29


ATLAS<br />

Low approximation for LUCID at 0.9 TeV<br />

ATLAS<br />

OR<br />

N zero/BX = e - A +<br />

AND<br />

N events/BX =<br />

e - sing<br />

<br />

e C -<br />

-e sing <br />

= 1- sing <br />

= e - coin = 1- coin <br />

OR<br />

=(1-N zero/BX ) /<br />

<br />

AND<br />

= (1-N events/BX )/<br />

coin<br />

sing<br />

Threshold A C sing coin<br />

10 pe 0.269 0.273 0.463 0.0788<br />

15 pe 0.239 0.243 0.420 0.0625<br />

50 pe 0.104 0.107 0.199 0.0124<br />

AND<br />

<br />

N hits = N tubes [1-e<br />

OR<br />

N hits/BX<br />

A<br />

N part/pp<br />

A Coinc<br />

e N part/pp N 2e A<br />

tubes ]<br />

= N tubes [ 1 - ( 1- N hits/pp N tubes ) ]<br />

sing<br />

N hits/pp<br />

coinc<br />

N hits/pp<br />

=<br />

OR<br />

= N hits/BX<br />

AND<br />

N hits/BX<br />

/<br />

/<br />

coinc<br />

N hits/pp<br />

sing<br />

N hits/pp<br />

A<br />

N hits/pp<br />

C<br />

N hits/pp<br />

sing<br />

N hits/pp<br />

coinc<br />

N hits/pp<br />

Threshold<br />

10 pe 0.550 0.559 0.856 0.2530<br />

15 pe 0.450 0.458 0.719 0.1890<br />

50 pe 0.138 0.142 0.250 0.0299<br />

V. Hedberg Luminosity Working Group 03.12.2009 30


ATLAS<br />

Measured for LUCID at 0.9 TeV<br />

ATLAS<br />

Selection of MBTS events using pulseheight and timing cuts and requiring hits<br />

on both sides.<br />

Monte Carlo Data<br />

sing <br />

A <br />

C <br />

coinc <br />

for loser cuts )<br />

coinc<br />

N hits/pp<br />

Monte Carlo Data<br />

<br />

<br />

sing<br />

N hits/pp<br />

<br />

<br />

V. Hedberg Luminosity Working Group 03.12.2009 31


ATLAS<br />

LUCID 14 TeV<br />

ATLAS<br />

Zero Counting - AND<br />

Zero Counting - OR<br />

Efficiency<br />

A C<br />

Hits = 0 Hits = 0<br />

0<br />

= 0.442<br />

Hits 1 Hits = 0<br />

1 = 0.212<br />

Hits = 0 Hits 1<br />

2<br />

= 0.212<br />

Hits 1 Hits 1<br />

3<br />

= 0.135<br />

Hit Counting - AND<br />

N hits/BX < 1<br />

Hit Counting - OR<br />

N hits/BX < 15<br />

Hit Counting - AND<br />

N hits/BX > 1<br />

Hit Counting - OR<br />

N hits/BX > 15<br />

V. Hedberg Luminosity Working Group 03.12.2009 32


ATLAS<br />

LUCID<br />

ATLAS<br />

What needs to be done ?<br />

Fits for all possible LHC energies are needed.<br />

Study of systematic errors.<br />

Studies using real event samples at low .<br />

Studies of the detector response using real event samples.<br />

V. Hedberg Luminosity Working Group 03.12.2009 33


ATLAS<br />

MBTS<br />

ATLAS<br />

MBTS has 16 plastic scintillators one each side. They are arranged<br />

in two rings and read-out by WLS fibers via the TileCal electronics.<br />

The signals are discriminated and provide a hit pattern that are used<br />

to do four measurements:<br />

WLS fibers<br />

16 Plastic<br />

Scintillators<br />

Zero-counting-AND<br />

Hit-counting-AND<br />

Zero-counting-OR<br />

Hit-counting-OR<br />

The efficiency of the detector is very high for non-diff. events:<br />

0<br />

= 0 1 = 0.004 2 = 0.004 3<br />

= 0.992 (14 TeV, only non-diff.)<br />

For the two zero-counting-methods, MBTS uses the following function that is fitted to the event<br />

probability (P):<br />

N 00 N<br />

<br />

0<br />

= -p 0 - p 1 ln(P) where P = or and p 0 , p 1 are constants<br />

N BX<br />

N BX<br />

For hit counting, MBTS plot as a function of the hit probability (P) and fit a ratio of two polynomial<br />

functions so that can be expressed as<br />

=<br />

p 3 + p 4 P + p 5 P 2 + p 6 P 3<br />

p 0 + p 1 P + p 2 P 2<br />

N hits<br />

where P = and p 0 ,....,p 6 are constants<br />

N BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 34


ATLAS<br />

MBTS 900 GeV - Only non-diff.<br />

ATLAS<br />

N 0<br />

-ln( )<br />

N<br />

-ln( 00<br />

)<br />

N BX<br />

N BX<br />

N hits<br />

N hits<br />

N BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 35<br />

N BX


ATLAS<br />

MBTS 10 TeV - Only non-diff.<br />

ATLAS<br />

N<br />

-ln( 0<br />

)<br />

N BX<br />

N<br />

-ln( 00<br />

)<br />

N BX<br />

N hits<br />

N BX<br />

N hits<br />

N BX<br />

V. Hedberg Luminosity Working Group 03.12.2009 36


ATLAS<br />

MBTS<br />

ATLAS<br />

What needs to be done ?<br />

Monte Carlo samples with a mixture including diffractive events have to be used.<br />

Fits for all possible LHC energies are needed.<br />

Studies of the detector response using real event samples.<br />

Studies where only a few of the 32 segments are used.<br />

Correct for pulses that are longer than the bunch separation time.<br />

V. Hedberg Luminosity Working Group 03.12.2009 37


ATLAS<br />

Beam separation scans<br />

ATLAS<br />

For Event-Counting-AND<br />

the probability function is<br />

N AND/BX =<br />

- A - C -( A C Coin <br />

1-e - e +e<br />

Assume that A = C and that coin = A x <br />

C N<br />

- A -(2 A A A <br />

AND/BX = 1-2e +e<br />

Fit<br />

N<br />

N<br />

AND<br />

BC<br />

LUCID<br />

ε AC /<br />

= 0.3430 ± 0.0007<br />

2<br />

χ = 1.10<br />

Deviations from fit<br />

μ<br />

The fit works surprisingly well !<br />

μ<br />

V. Hedberg Luminosity Working Group 03.12.2009 38


ATLAS<br />

Beam separation scans<br />

ATLAS<br />

A separation scan done at >1 will be distorted by the non-linear behaviour of<br />

the rate measurement.<br />

Beam separation scan with LUCID<br />

Assumptions:<br />

= 3<br />

= 90 m<br />

A Gaussian fit gives = 87.4 m<br />

-<br />

A fit with N AND/BX = 1-2e A -(2<br />

+e<br />

A A A <br />

gives:<br />

True Measured Difference<br />

3 3.2 8%<br />

: 90 m 90.8 m 0.9%<br />

A : 0.343 0.321 7%<br />

Backg. = 30%<br />

Σ( μm)<br />

The fit works better at higher where the<br />

distortions are larger !<br />

-<br />

A second fit with N OR/BX = 1- e<br />

sing <br />

to Event-Counting-OR events give sing .<br />

V. Hedberg Luminosity Working Group 03.12.2009 39


ATLAS<br />

Final remarks<br />

ATLAS<br />

All detectors have done a lot of progress towards the goal of<br />

having realistic luminosity algorithms.<br />

But we are not there yet !<br />

Due to a lack of manpower the progress is slow (and LHC running<br />

does not help).<br />

We will have a lot of work to do also in 2010 !<br />

V. Hedberg Luminosity Working Group 03.12.2009 40


LIST OF METHODS


ATLAS<br />

Zero-counting-AND<br />

ATLAS<br />

Zero-counting-AND events are events with no signals in both detectors:<br />

A C<br />

Hits = 0 Hits = 0<br />

The probability to have a zero-AND event is<br />

N 00/BX = e ( 0-1) = ē<br />

sing =<br />

N 00<br />

N BX<br />

=<br />

Number of measured zero-AND events<br />

Number of bunch crossings<br />

This function can easily be inverted so that can be obtained from the measured events:<br />

=<br />

N 00<br />

ln ( )<br />

N BX<br />

0 -1<br />

N 00<br />

ln ( )<br />

N BX<br />

= where only one parameter ( 0 ) has to be determined from Monte Carlo<br />

- sing<br />

The instantaneous luminosity is the obtained from<br />

L = R in<br />

in<br />

= f BX<br />

in<br />

x<br />

N 00<br />

ln ( )<br />

N BX<br />

0 -1<br />

where in = 79-83 mb at 14 TeV<br />

0 = 0.442 (LUCID) = 0.711 (BCM) = 0 (MBTS) all at 14 TeV<br />

V. Hedberg Luminosity Working Group 03.12.2009 42


ATLAS<br />

Zero-counting-AND<br />

ATLAS<br />

Even if one can find a simple expression of as a function of the number of measured empty events,<br />

this does not mean that this expression gives a perfect estimation of .<br />

LUCID:<br />

- 1)[%]<br />

true<br />

/μ<br />

meas<br />

(μ<br />

25<br />

20<br />

15<br />

10<br />

Zero Counting (single AND side)<br />

True<br />

Thr = 40 p.e.<br />

Thr = 50 p.e.<br />

Thr = 60 p.e.<br />

Thr = 70 p.e.<br />

5<br />

0<br />

-5<br />

-2<br />

10<br />

-1<br />

10 1 10<br />

B<br />

μ = σ inel<br />

× L<br />

true<br />

The reason for the error in the -determination above is migration i.e. the effect of particles with a<br />

low pulseheight (below the discriminator threshold) that add up at large and produce a total signal<br />

above threshold.<br />

V. Hedberg Luminosity Working Group 03.12.2009 43


ATLAS<br />

Event-counting-OR<br />

ATLAS<br />

Event-counting-OR events are events with a signal in at least one detector:<br />

Probability( Zero-counting-AND ) = 1 - Probability( Event-counting-OR)<br />

A C<br />

Hits 1 Hits 1<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

The probability to have an event-counting-OR event is<br />

N OR/BX = 1 - e ( 0 -1) = 1 - e -sing =<br />

N OR<br />

N OR/BX Sing if


ATLAS<br />

Zero-counting-OR<br />

ATLAS<br />

A C<br />

Zero-counting-OR events are events with no signals in one or two detectors:<br />

The probability to have a zero-AND event is given by<br />

Hits = 0 Hits = 0<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

N 0/BX = N 0<br />

N BX<br />

=<br />

Number of measured zero-OR events<br />

Number of bunch crossings<br />

( 0 + 1 -1) (<br />

N 0/BX = e +e 0 + 2 -1)<br />

-e<br />

( 0 -1) - A - C -( A C Coin <br />

= e + e -e<br />

( 0 + 1 -1) (<br />

N 0/BX = 2e -e 0 -1) -<br />

= 2e A -(2<br />

-e<br />

A Coin N 0<br />

= if 1 = 2<br />

N BX<br />

=<br />

N 0<br />

N BX<br />

and A C<br />

This function cannot be inverted analytically and it depends on two parameters .<br />

0 and 1 ).<br />

V. Hedberg Luminosity Working Group 03.12.2009 45


ATLAS<br />

Event-counting-AND<br />

ATLAS<br />

Event-counting-AND events are events with a signals in both detectors:<br />

Probability( Zero-counting-OR ) = 1 - Probability( Event-counting-AND)<br />

A C<br />

Hits 1 Hits 1<br />

The probability to have an event-counting-AND event is given by<br />

N AND/BX = N AND<br />

N BX<br />

=<br />

Number of measured event-counting-AND events<br />

Number of bunch crossings<br />

Sing<br />

(<br />

N AND/BX = 1-e 0 + 1 -1) (<br />

-e 0 + 2 -1)<br />

+e<br />

( 0 -1) - A - C -( A C Coin <br />

= 1-e - e +e<br />

(<br />

N AND/BX = 1-2e 0 + 1 -1)<br />

+e<br />

( 0 -1) -<br />

= 1-2e A -(2<br />

+e<br />

A Coin if 1 = 2 and A C<br />

This function cannot be inverted analytically and it depends on two parameters .<br />

0 and 1 ).<br />

N AND/BX = Coin if


ATLAS<br />

Event-counting-XOR<br />

ATLAS<br />

Event-counting-XOR events are events with signals in only one detector:<br />

A C<br />

Hits 1<br />

or<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

The probability to have an event-counting-XOR event on side A is given by<br />

N A/BX = N A<br />

N BX<br />

=<br />

Number of measured event-counting-XOR-side A events<br />

Number of bunch crossings<br />

( 0 + 1 -1) ( 0 -1)<br />

N A/BX = e -e<br />

and for side C one gets<br />

( 0 + 2 -1) ( 0 -1)<br />

N C/BX = e -e<br />

These functions cannot be inverted analytically and they depends on two parameters.<br />

V. Hedberg Luminosity Working Group 03.12.2009 47


ATLAS<br />

Hit-counting-OR<br />

ATLAS<br />

Hit-counting-OR is a method which uses the hits in any detector:<br />

A C<br />

Hits 1 Hits 1<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

If the detectors counted the true number of particles then<br />

N<br />

part/BX<br />

= =<br />

N part/pp<br />

The average number of detected particles per bunch crossing<br />

The average number of detected particles per inelastic pp interaction<br />

Instead the detectors count hits and at large there will be several particles in each detector element.<br />

The number of particles can, however, be estimated from the number of hits:<br />

N part = - N tubes x<br />

and so<br />

=<br />

ln<br />

ln<br />

(<br />

(<br />

1-<br />

1-<br />

N hits/BX<br />

N tubes<br />

N hits/pp<br />

)<br />

)<br />

N hits<br />

ln ( 1- )<br />

N tubes<br />

where N tubes is the number of detector elements i.e. tubes in<br />

the case of LUCID and scintillator segments in the case of MBTS.<br />

N tubes<br />

V. Hedberg Luminosity Working Group 03.12.2009 48


ATLAS<br />

Hit-counting-AND<br />

ATLAS<br />

Hit-counting-AND is a method which uses the hits under the condition that both<br />

sides have hits:<br />

A C<br />

Hits 1 Hits 1<br />

The average number of particles in a bunch crossing can be estimated in this mode from the expected<br />

number of hits for one inelastic pp interaction and the efficiencies. Assuming that the detector response<br />

on side A and side C are identical one gets<br />

N part/BX<br />

<br />

A<br />

N part/pp<br />

<br />

e<br />

A<br />

<br />

Coinc<br />

N part/pp<br />

<br />

2e<br />

A<br />

if<br />

A Npart/pp<br />

<br />

C<br />

N part/pp<br />

and<br />

A<br />

<br />

C<br />

where N part is obtained from N hits by<br />

N part = - N tubes x<br />

N hits<br />

ln ( 1- )<br />

N tubes<br />

N hits/BX = N tubes[ 1 - e<br />

<br />

A<br />

N part/pp<br />

<br />

e<br />

A Coinc<br />

N part/pp N 2e A<br />

] tubes<br />

What is needed is expressed as N hits but the function above cannot be inverted analytically.<br />

N hits/BX = N tubes[ 1 - e<br />

N Coinc<br />

part/pp<br />

A<br />

N part/pp N tubes<br />

]<br />

for large <br />

N hits/BX = Coinc<br />

N part/pp<br />

for small <br />

V. Hedberg Luminosity Working Group 03.12.2009 49


ATLAS<br />

Statistics at low <br />

ATLAS<br />

Zero-AND<br />

Event-OR<br />

Compare the methods zero-counting-AND with event-counting-OR: Hits = 0 Hits = 0 Hits 1 Hits 1<br />

Zero-counting-AND:<br />

= N 00<br />

e ( 0 -1)<br />

N BX<br />

Event-counting-OR: 1 - e ( 0-1)<br />

=<br />

N OR<br />

N BX<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

Conclusion: N 00 = N BX - N OR<br />

where N BX is a constant and so both methods have the same<br />

statistical uncertainty.<br />

Event-AND<br />

Event-OR<br />

Compare the methods event-counting-AND with event-counting-OR: Hits 1 Hits 1 Hits 1 Hits 1<br />

Conclusion: N OR > N AND<br />

Hits 1<br />

Hits = 0<br />

Hits = 0 Hits 1<br />

Compare the methods event-counting-OR with hit-counting-OR:<br />

N OR/BX = 1 - e ( 0 -1)<br />

N hits/BX<br />

N hits/pp <br />

[ 1 - ( 1- ) ] N hits/pp = 1.20 for

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!