30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

106 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

17.<br />

<br />

xy =1+x 2 y ⇒ 1 2 (xy)−1/2 (xy 0 + y · 1) = 0 + x 2 y 0 + y · 2x ⇒<br />

19.<br />

21.<br />

23.<br />

<br />

<br />

y 0 x<br />

2 xy − x2 =2xy −<br />

y<br />

2 xy<br />

⇒<br />

<br />

y 0 x − 2x 2 <br />

xy<br />

2 xy<br />

= 4xy xy − y<br />

2 xy<br />

x<br />

2 xy y0 + y<br />

2 xy = x2 y 0 +2xy ⇒<br />

⇒<br />

y 0 = 4xy xy − y<br />

x − 2x 2 xy<br />

d<br />

dx (ey cos x) = d<br />

dx [1 + sin(xy)] ⇒ ey (− sin x)+cosx · e y · y 0 =cos(xy) · (xy 0 + y · 1) ⇒<br />

−e y sin x + e y cos x · y 0 = x cos(xy) · y 0 + y cos(xy) ⇒ e y cos x · y 0 − x cos(xy) · y 0 = e y sin x + y cos(xy) ⇒<br />

[e y cos x − x cos(xy)] y 0 = e y sin x + y cos(xy) ⇒ y 0 = ey sin x + y cos(xy)<br />

e y cos x − x cos(xy)<br />

d <br />

f(x)+x 2 [f(x)] 3 = d<br />

dx<br />

dx (10) ⇒ f 0 (x)+x 2 · 3[f(x)] 2 · f 0 (x)+[f(x)] 3 · 2x =0. Ifx =1,wehave<br />

f 0 (1) + 1 2 · 3[f(1)] 2 · f 0 (1) + [f(1)] 3 · 2(1) = 0 ⇒ f 0 (1) + 1 · 3 · 2 2 · f 0 (1) + 2 3 · 2=0 ⇒<br />

f 0 (1) + 12f 0 (1) = −16 ⇒ 13f 0 (1) = −16 ⇒ f 0 (1) = − 16<br />

13 .<br />

d<br />

dy (x4 y 2 − x 3 y +2xy 3 )= d<br />

dy (0) ⇒ x4 · 2y + y 2 · 4x 3 x 0 − (x 3 · 1+y · 3x 2 x 0 )+2(x · 3y 2 + y 3 · x 0 )=0 ⇒<br />

4x 3 y 2 x 0 − 3x 2 yx 0 +2y 3 x 0 = −2x 4 y + x 3 − 6xy 2 ⇒ (4x 3 y 2 − 3x 2 y +2y 3 ) x 0 = −2x 4 y + x 3 − 6xy 2 ⇒<br />

x 0 = dx<br />

dy = −2x4 y + x 3 − 6xy 2<br />

4x 3 y 2 − 3x 2 y +2y 3<br />

25. x 2 + xy + y 2 =3 ⇒ 2x + xy 0 + y · 1+2yy 0 =0 ⇒ xy 0 +2yy 0 = −2x − y ⇒ y 0 (x +2y) =−2x − y ⇒<br />

y 0 = −2x − y<br />

x +2y . Whenx =1and y =1,wehavey0 = −2 − 1<br />

1+2· 1 = −3 = −1, so an equation of the tangent line is<br />

3<br />

y − 1=−1(x − 1) or y = −x +2.<br />

27. x 2 + y 2 =(2x 2 +2y 2 − x) 2 ⇒ 2x +2yy 0 =2(2x 2 +2y 2 − x)(4x +4yy 0 − 1). Whenx =0and y = 1 ,wehave<br />

2<br />

0+y 0 =2( 1 2 )(2y0 − 1) ⇒ y 0 =2y 0 − 1 ⇒ y 0 =1, so an equation of the tangent line is y − 1 =1(x − 0)<br />

2<br />

or y = x + 1 . 2<br />

29. 2(x 2 + y 2 ) 2 =25(x 2 − y 2 ) ⇒ 4(x 2 + y 2 )(2x +2yy 0 ) = 25(2x − 2yy 0 ) ⇒<br />

4(x + yy 0 )(x 2 + y 2 )=25(x − yy 0 ) ⇒ 4yy 0 (x 2 + y 2 )+25yy 0 =25x − 4x(x 2 + y 2 ) ⇒<br />

y 0 = 25x − 4x(x2 + y 2 )<br />

25y +4y(x 2 + y 2 ) . Whenx =3and y =1,wehavey0 75 − 120<br />

= = − 45 = − 9 ,<br />

25 + 40 65 13<br />

so an equation of the tangent line is y − 1=− 9<br />

13 (x − 3) or y = − 9 13 x + 40<br />

13 .<br />

31. (a) y 2 =5x 4 − x 2 ⇒ 2yy 0 =5(4x 3 ) − 2x ⇒ y 0 = 10x3 − x<br />

.<br />

y<br />

(b)<br />

So at the point (1, 2) we have y 0 = 10(1)3 − 1<br />

2<br />

of the tangent line is y − 2= 9 2 (x − 1) or y = 9 2 x − 5 2 .<br />

= 9 , and an equation<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!