30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

104 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

83. By the Chain Rule, a(t) = dv<br />

dt = dv ds<br />

ds dt = dv<br />

dv<br />

v(t) =v(t)<br />

ds ds .<br />

Thederivativedv/dt is the rate of change of the velocity<br />

with respect to time (in other words, the acceleration) whereas the derivative dv/ds is the rate of change of the velocity with<br />

respect to the displacement.<br />

85. (a) Using a calculator or CAS, we obtain the model Q = ab t with a ≈ 100.0124369 and b ≈ 0.000045145933.<br />

(b) Use Q 0 (t) =ab t ln b (from Formula 5) with the values of a and b from part (a) to get Q 0 (0.04) ≈−670.63 μA.<br />

The result of Example 2 in Section 2.1 was −670 μA.<br />

87. (a) Derive gives g 0 (t) =<br />

45(t − 2)8<br />

without simplifying. With either Maple or Mathematica, we first get<br />

(2t +1)<br />

10<br />

g 0 (t − 2)8 (t − 2)9<br />

(t) =9 − 18 , and the simplification command results in the expression given by Derive.<br />

(2t +1)<br />

9<br />

(2t +1)<br />

10<br />

(b) Derive gives y 0 =2(x 3 − x +1) 3 (2x +1) 4 (17x 3 +6x 2 − 9x +3)without simplifying. With either Maple or<br />

Mathematica, we first get y 0 =10(2x +1) 4 (x 3 − x +1) 4 +4(2x +1) 5 (x 3 − x +1) 3 (3x 2 − 1). Ifweuse<br />

Mathematica’s Factor or Simplify,orMaple’sfactor, we get the above expression, but Maple’s simplify gives<br />

the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful.<br />

89. (a) If f is even, then f(x) =f(−x). Using the Chain Rule to differentiate this equation, we get<br />

f 0 (x) =f 0 (−x) d<br />

dx (−x) =−f 0 (−x). Thus,f 0 (−x) =−f 0 (x),sof 0 is odd.<br />

(b) If f is odd, then f(x) =−f(−x).<br />

even.<br />

91. (a)<br />

(b)<br />

d<br />

dx (sinn x cos nx) =n sin n−1 x cos x cos nx +sin n x (−n sin nx)<br />

Differentiating this equation, we get f 0 (x) =−f 0 (−x)(−1) = f 0 (−x),sof 0 is<br />

[Product Rule]<br />

= n sin n−1 x (cos nx cos x − sin nx sin x) [factor out n sin n−1 x]<br />

= n sin n−1 x cos(nx + x) [Addition Formula for cosine]<br />

= n sin n−1 x cos[(n +1)x] [factor out x]<br />

d<br />

dx (cosn x cos nx) =n cos n−1 x (− sin x)cosnx +cos n x (−n sin nx)<br />

[Product Rule]<br />

= −n cos n−1 x (cos nx sin x +sinnx cos x) [factor out −n cos n−1 x]<br />

= −n cos n−1 x sin(nx + x) [Addition Formula for sine]<br />

= −n cos n−1 x sin[(n +1)x] [factor out x]<br />

93. Since θ ◦ = <br />

π<br />

d<br />

180 θ rad, we have<br />

dθ (sin θ◦ )= d <br />

sin<br />

π<br />

180<br />

dθ<br />

θ = π cos π θ = π cos 180 180 180 θ◦ .<br />

95. The Chain Rule says that dy<br />

dx = dy<br />

du<br />

dy<br />

d 2 y<br />

dx = d<br />

2 dx<br />

dx<br />

du<br />

dx ,so<br />

<br />

= d<br />

dx<br />

dy du<br />

du dx<br />

d<br />

=<br />

dx<br />

dy du<br />

du<br />

dx + dy d<br />

du dx<br />

du<br />

dx<br />

[Product Rule]<br />

d<br />

=<br />

du<br />

dy<br />

du<br />

du du<br />

dx dx + dy<br />

<br />

d 2 u<br />

du dx = d2 y du<br />

2 du 2 dx<br />

2<br />

+ dy d 2 u<br />

du dx 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!