30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

100 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

19. y =(2x − 5) 4 (8x 2 − 5) −3 ⇒<br />

y 0 =4(2x − 5) 3 (2)(8x 2 − 5) −3 +(2x − 5) 4 (−3)(8x 2 − 5) −4 (16x)<br />

=8(2x − 5) 3 (8x 2 − 5) −3 − 48x(2x − 5) 4 (8x 2 − 5) −4<br />

[This simplifies to 8(2x − 5) 3 (8x 2 − 5) −4 (−4x 2 +30x − 5).]<br />

21. y =<br />

x 2 3<br />

+1<br />

x 2 − 1<br />

⇒<br />

x<br />

y 0 2 2<br />

+1<br />

=3<br />

·<br />

x 2 − 1<br />

x 2 +1<br />

=3<br />

x 2 − 1<br />

d<br />

dx<br />

x 2 +1<br />

=3<br />

x 2 − 1<br />

23. y = e x cos x ⇒ y 0 = e x cos x ·<br />

25. F (z) =<br />

2<br />

· 2x[x2 − 1 − (x 2 +1)]<br />

(x 2 − 1) 2 =3<br />

1/2<br />

z − 1 z − 1<br />

z +1 = z +1<br />

F 0 (z) = 1 −1/2 z − 1<br />

·<br />

2 z +1<br />

d<br />

dz<br />

x 2 2<br />

+1<br />

· (x2 − 1)(2x) − (x 2 +1)(2x)<br />

x 2 − 1<br />

(x 2 − 1) 2<br />

x 2 2<br />

+1<br />

·<br />

x 2 − 1<br />

2x(−2)<br />

(x 2 − 1) = −12x(x2 +1) 2<br />

2 (x 2 − 1) 4<br />

d<br />

dx (x cos x) =ex cos x [x(− sin x)+(cosx) · 1] = e x cos x (cos x − x sin x)<br />

⇒<br />

z − 1<br />

= 1 z +1 2<br />

1/2 z +1<br />

·<br />

z − 1<br />

(z +1)(1)− (z − 1)(1)<br />

(z +1) 2<br />

= 1 (z +1) 1/2 z +1− z +1<br />

· = 1 (z +1) 1/2<br />

2 (z − 1)<br />

1/2<br />

(z +1) 2 2 (z − 1) · 2<br />

1/2 (z +1) = 1<br />

2 (z − 1) 1/2 (z +1) 3/2<br />

27. y =<br />

r<br />

√<br />

r2 +1<br />

⇒<br />

y 0 =<br />

√<br />

√<br />

r 2<br />

r2 +1(1)− r · 1<br />

2 (r2 +1) −1/2 r2 +1− √<br />

(2r)<br />

√<br />

r2 +1 r2 +1<br />

2<br />

= √<br />

r2 +1 2<br />

=<br />

√<br />

r2 +1 √ r 2 +1− r 2<br />

√<br />

r2 +1<br />

√<br />

r2 +1 2<br />

=<br />

r 2 +1 − r 2<br />

√<br />

r2 +1 1<br />

3<br />

=<br />

(r 2 +1) or 3/2 (r2 +1) −3/2<br />

Another solution: Write y as a product and make use of the Product Rule. y = r(r 2 +1) −1/2<br />

⇒<br />

y 0 = r · − 1 2 (r2 +1) −3/2 (2r)+(r 2 +1) −1/2 · 1=(r 2 +1) −3/2 [−r 2 +(r 2 +1) 1 ]=(r 2 +1) −3/2 (1) = (r 2 +1) −3/2 .<br />

The step that students usually have trouble with is factoring out (r 2 +1) −3/2 . But this is no different than factoring out x 2<br />

from x 2 + x 5 ; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this case, − 3 2 is<br />

smaller than − 1 2 .<br />

29. y = sin(tan 2x) ⇒ y 0 =cos(tan2x) ·<br />

31. Using Formula 5 and the Chain Rule, y =2 sin πx ⇒<br />

y 0 =2 sin πx (ln 2) ·<br />

d<br />

dx (tan 2x) = cos(tan 2x) · d<br />

sec2 (2x) ·<br />

dx (2x) = 2 cos(tan 2x)sec2 (2x)<br />

d<br />

dx (sin πx) =2sin πx (ln 2) · cos πx · π =2 sin πx (π ln 2) cos πx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!