30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

96 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

We will sometimes use the form f 0 g + fg 0 rather than the form fg 0 + gf 0 for the Product Rule.<br />

55. (a) (fgh) 0 =[(fg)h] 0 =(fg) 0 h +(fg)h 0 =(f 0 g + fg 0 )h +(fg)h 0 = f 0 gh + fg 0 h + fgh 0<br />

(b) Putting f = g = h in part (a), we have d<br />

dx [f(x)]3 =(fff) 0 = f 0 ff + ff 0 f + fff 0 =3fff 0 =3[f(x)] 2 f 0 (x).<br />

(c)<br />

d<br />

dx (e3x )= d<br />

dx (ex ) 3 =3(e x ) 2 e x =3e 2x e x =3e 3x<br />

57. For f(x) =x 2 e x , f 0 (x) =x 2 e x + e x (2x) =e x (x 2 +2x). Similarly, we have<br />

f 00 (x) =e x (x 2 +4x +2)<br />

f 000 (x) =e x (x 2 +6x +6)<br />

f (4) (x) =e x (x 2 +8x + 12)<br />

f (5) (x) =e x (x 2 +10x +20)<br />

It appears that the coefficient of x in the quadratic term increases by 2 with each differentiation. The pattern for the<br />

constant terms seems to be 0=1· 0, 2=2· 1, 6=3· 2, 12 = 4 · 3, 20 = 5 · 4. So a reasonable guess is that<br />

f (n) (x) =e x [x 2 +2nx + n(n − 1)].<br />

Proof: Let S n be the statement that f (n) (x) =e x [x 2 +2nx + n(n − 1)].<br />

1. S 1 is true because f 0 (x) =e x (x 2 +2x).<br />

2. Assume that S k is true; that is, f (k) (x) =e x [x 2 +2kx + k(k − 1)]. Then<br />

f (k+1) (x) = d <br />

f (k) (x) = e x (2x +2k)+[x 2 +2kx + k(k − 1)]e x<br />

dx<br />

= e x [x 2 +(2k +2)x +(k 2 + k)] = e x [x 2 +2(k +1)x +(k +1)k]<br />

This shows that S k+1 is true.<br />

3. Therefore, by mathematical induction, S n is true for all n;thatis,f (n) (x) =e x [x 2 +2nx + n(n − 1)] for every<br />

positive integer n.<br />

3.3 Derivatives of Trigonometric Functions<br />

1. f(x) =3x 2 − 2cosx ⇒ f 0 (x) =6x − 2(− sin x) =6x +2sinx<br />

3. f(x) =sinx + 1 2 cot x ⇒ f 0 (x) =cosx − 1 2 csc2 x<br />

5. g(t) =t 3 cos t ⇒ g 0 (t) =t 3 (− sin t)+(cost) · 3t 2 =3t 2 cos t − t 3 sin t or t 2 (3 cos t − t sin t)<br />

7. h(θ) =cscθ + e θ cot θ ⇒ h 0 (θ) =− csc θ cot θ + e θ (− csc 2 θ)+(cotθ)e θ = − csc θ cot θ + e θ (cot θ − csc 2 θ)<br />

9. y =<br />

x<br />

2 − tan x ⇒ y0 = (2 − tan x)(1) − x(− sec2 x)<br />

= 2 − tan x + x sec2 x<br />

(2 − tan x) 2 (2 − tan x) 2<br />

11. f(θ) = sec θ<br />

1+secθ<br />

⇒<br />

f 0 (θ) =<br />

(1 + sec θ)(sec θ tan θ) − (sec θ)(sec θ tan θ) (sec θ tan θ) [(1+secθ) − sec θ] sec θ tan θ<br />

= =<br />

(1 + sec θ) 2 (1 + sec θ) 2 (1 + sec θ) 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!