30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

90 ¤ CHAPTER 3 DIFFERENTIATION RULES<br />

TX.10<br />

57. The slope of y = x 2 − 5x +4is given by m = y 0 =2x − 5. The slope of x − 3y =5 ⇔ y = 1 3 x − 5 3 is 1 3 ,<br />

so the desired normal line must have slope 1 , and hence, the tangent line to the parabola must have slope −3. This occurs if<br />

3<br />

2x − 5=−3 ⇒ 2x =2 ⇒ x =1.Whenx =1, y =1 2 − 5(1) + 4 = 0, and an equation of the normal line is<br />

y − 0= 1 3 (x − 1) or y = 1 3 x − 1 3 .<br />

59. Let a, a 2 be a point on the parabola at which the tangent line passes through the<br />

point (0, −4). The tangent line has slope 2a and equation y − (−4) = 2a(x − 0)<br />

⇔<br />

y =2ax − 4. Since a, a 2 also lies on the line, a 2 =2a(a) − 4,ora 2 =4.So<br />

a = ±2 and the points are (2, 4) and (−2, 4).<br />

1<br />

61. f 0 f(x + h) − f(x)<br />

(x) = lim<br />

= lim<br />

x + h − 1 x<br />

h→0 h<br />

h→0 h<br />

= lim<br />

h→0<br />

x − (x + h)<br />

hx(x + h) =lim<br />

h→0<br />

−h<br />

hx(x + h) =lim<br />

h→0<br />

63. Let P (x) =ax 2 + bx + c. ThenP 0 (x) =2ax + b and P 00 (x) =2a. P 00 (2) = 2 ⇒ 2a =2 ⇒ a =1.<br />

P 0 (2) = 3 ⇒ 2(1)(2) + b =3 ⇒ 4+b =3 ⇒ b = −1.<br />

P (2) = 5 ⇒ 1(2) 2 +(−1)(2) + c =5 ⇒ 2+c =5 ⇒ c =3.SoP (x) =x 2 − x +3.<br />

−1<br />

x(x + h) = − 1 x 2<br />

65. y = f(x) =ax 3 + bx 2 + cx + d ⇒ f 0 (x) =3ax 2 +2bx + c. Thepoint(−2, 6) is on f, sof(−2) = 6 ⇒<br />

−8a +4b − 2c + d =6 (1). The point (2, 0) is on f, sof(2) = 0 ⇒ 8a +4b +2c + d =0 (2). Since there are<br />

horizontal tangents at (−2, 6) and (2, 0), f 0 (±2) = 0. f 0 (−2) = 0 ⇒ 12a − 4b + c =0 (3) and f 0 (2) = 0 ⇒<br />

12a +4b + c =0 (4). Subtracting equation (3) from (4) gives 8b =0 ⇒ b =0. Adding (1) and (2) gives 8b +2d =6,<br />

so d =3since b =0.From(3) we have c = −12a,so(2) becomes 8a +4(0)+2(−12a)+3=0 ⇒ 3=16a ⇒<br />

a = 3 <br />

3<br />

16 16 = −<br />

9<br />

3<br />

and the desired cubic function is y =<br />

4 16 x3 − 9 x +3. 4<br />

67. f(x) =2− x if x ≤ 1 and f(x) =x 2 − 2x +2if x>1. Now we compute the right- and left-hand derivatives defined in<br />

Exercise 2.8.54:<br />

f 0 −(1) =<br />

f(1 + h) − f(1) 2 − (1 + h) − 1 −h<br />

lim<br />

= lim<br />

= lim<br />

h→0 − h<br />

h→0 − h<br />

h→0 − h = lim −1 =−1 and<br />

h→0− f+(1) 0 f(1 + h) − f(1) (1 + h) 2 − 2(1 + h)+2− 1 h 2<br />

= lim<br />

= lim<br />

= lim<br />

h→0 + h<br />

h→0 + h<br />

h→0 + h = lim h =0.<br />

h→0 +<br />

Thus, f 0 (1) does not exist since f−(1) 0 6=f+(1),sof<br />

0<br />

is not differentiable at 1. Butf 0 (x) =−1 for x1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!