30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

CHAPTER 18 REVIEW ET CHAPTER 17 ¤ 319<br />

7. r 2 − 2r +1=0 ⇒ r =1and y c(x) =c 1e x + c 2xe x .Tryy p(x) =(Ax + B)cosx +(Cx + D)sinx ⇒<br />

y 0 p =(C − Ax − B)sinx +(A + Cx + D)cosx and y 00<br />

p =(2C − B − Ax)cosx +(−2A − D − Cx)sinx. Substitution<br />

gives (−2Cx +2C − 2A − 2D)cosx +(2Ax − 2A +2B − 2C)sinx = x cos x ⇒ A =0, B = C = D = − 1 2 .<br />

The general solution is y(x) =c 1 e x + c 2 xe x − 1 cos x − 1 (x +1)sinx.<br />

2 2<br />

9. r 2 − r − 6=0 ⇒ r = −2, r =3and y c(x) =c 1e −2x + c 2e 3x .Fory 00 − y 0 − 6y =1,tryy p1 (x) =A. Then<br />

y 0 p 1<br />

(x) =y 00<br />

p 1<br />

(x) =0and substitution into the differential equation gives A = − 1 6 .Fory00 − y 0 − 6y = e −2x try<br />

y p2 (x) =Bxe −2x<br />

[since y = Be −2x satisfies the complementary equation]. Then y 0 p 2<br />

=(B − 2Bx)e −2x and<br />

yp 00<br />

2<br />

=(4Bx − 4B)e −2x , and substitution gives −5Be −2x = e −2x ⇒ B = − 1 5<br />

. The general solution then is<br />

y(x) =c 1 e −2x + c 2 e 3x + y p1 (x)+y p2 (x) =c 1 e −2x + c 2 e 3x − 1 6 − 1 5 xe−2x .<br />

11. The auxiliary equation is r 2 +6r =0and the general solution is y(x) =c 1 + c 2 e −6x = k 1 + k 2 e −6(x−1) .But<br />

3=y(1) = k 1 + k 2 and 12 = y 0 (1) = −6k 2 . Thus k 2 = −2, k 1 =5and the solution is y(x) =5− 2e −6(x−1) .<br />

13. The auxiliary equation is r 2 − 5r +4=0and the general solution is y(x) =c 1e x + c 2e 4x .But0=y(0) = c 1 + c 2<br />

and 1=y 0 (0) = c 1 +4c 2 , so the solution is y(x) = 1 3 (e4x − e x ).<br />

<br />

15. Let y(x) = ∞ c n x n .Theny 00 <br />

(x) = ∞ n(n − 1)c n x n−2 <br />

= ∞ (n +2)(n +1)c n+2 x n and the differential equation<br />

n=0<br />

n=0<br />

<br />

becomes ∞ [(n +2)(n +1)c n+2 +(n +1)c n ]x n =0. Thus the recursion relation is c n+2 = −c n /(n +2)<br />

n=0<br />

for n =0, 1, 2, ....Butc 0 = y(0) = 0,soc 2n =0for n =0, 1, 2, ....Alsoc 1 = y 0 (0) = 1,soc 3 = − 1 3 , c 5 = (−1)2<br />

3 · 5 ,<br />

c 7 = (−1)3<br />

3 · 5 · 7 = (−1)3 2 3 3!<br />

, ..., c 2n+1 = (−1)n 2 n n!<br />

7!<br />

(2n +1)!<br />

<br />

is y(x) = ∞ c n x n <br />

= ∞<br />

n=0<br />

n=0<br />

(−1) n 2 n n!<br />

(2n +1)!<br />

x 2n+1 .<br />

n=0<br />

for n =0, 1, 2,.... Thus the solution to the initial-value problem<br />

17. Here the initial-value problem is 2Q 00 +40Q 0 + 400Q =12, Q (0) = 0.01, Q 0 (0) = 0. Then<br />

Q c(t) =e −10t (c 1 cos 10t + c 2 sin 10t) and we try Q p(t) =A. Thus the general solution is<br />

Q(t) =e −10t (c 1 cos 10t + c 2 sin 10t)+ 3<br />

100 .But0.01 = Q0 (0) = c 1 +0.03 and 0=Q 00 (0) = −10c 1 +10c 2 ,<br />

so c 1 = −0.02 = c 2 . Hence the charge is given by Q(t) =−0.02e −10t (cos 10t +sin10t)+0.03.<br />

19. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density ρ as follows:<br />

ρ =<br />

mass of earth<br />

volume of earth =<br />

M<br />

4<br />

3 πR3 .IfV r is the volume of the portion of the earth which lies within a distance r of the<br />

center, then V r = 4 3 πr3 and M r = ρV r = Mr3<br />

R .ThusF 3<br />

r = − GM rm<br />

= − GMm r.<br />

r 2 R 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!