30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 18.4 SERIES SOLUTIONS ET SECTION 17.4 ¤ 317<br />

<br />

Since ∞ n(n +1)c n+1 x n <br />

= ∞ n(n +1)c n+1 x n , the differential equation becomes<br />

n=1<br />

n=0<br />

∞<br />

n(n +1)c n+1 x n <br />

− ∞ (n +2)(n +1)c n+2 x n <br />

+ ∞ (n +1)c n+1 x n =0 ⇒<br />

n=0<br />

n=0<br />

n=0<br />

∞<br />

[n(n +1)c n+1 − (n +2)(n +1)c n+2 +(n +1)c n+1]x n =0 or<br />

n=0<br />

∞<br />

[(n +1) 2 c n+1 − (n +2)(n +1)c n+2]x n =0.<br />

Equating coefficients gives (n +1) 2 c n+1 − (n +2)(n +1)c n+2 =0for n =0, 1, 2, .... Then the recursion relation is<br />

c n+2 =<br />

(n +1) 2<br />

n +1<br />

cn+1 =<br />

(n +2)(n +1) n +2 cn+1,sogivenc0 and c1,wehavec2 = 1 c1, 2 c3 = 2 3 c2 = 1 c1, 3 c4 = 3 4 c3 = 1 c1,and<br />

4<br />

in general c n = c 1<br />

n , n =1, 2, 3, .... Thus the solution is y(x) =c ∞<br />

0 + c 1<br />

c 0 − c 1 ln(1 − x) for |x| < 1.<br />

9. Let y(x) = ∞ <br />

y 00 (x) =<br />

becomes<br />

c n+2 =<br />

y(0) = ∞ <br />

∞ <br />

n =0<br />

∞ <br />

n =0<br />

n =0<br />

c n x n .Then−xy 0 (x) =−x ∞ <br />

n =1<br />

nc n x n−1 = − ∞ <br />

n =1<br />

n=0<br />

(n +2)(n +1)c n+2x n , and the equation y 00 − xy 0 − y =0<br />

n=1<br />

x n<br />

. Note that the solution can be expressed as<br />

n<br />

nc n x n = − ∞ <br />

n =0<br />

[(n +2)(n +1)c n+2 − nc n − c n ]x n =0. Thus, the recursion relation is<br />

nc n x n ,<br />

nc n + c n<br />

(n +2)(n +1) = c n(n +1)<br />

(n +2)(n +1) = c n<br />

for n =0, 1, 2, .... One of the given conditions is y(0) = 1. But<br />

n +2<br />

n=0<br />

c n(0) n = c 0 +0+0+···= c 0,soc 0 =1. Hence, c 2 = c 0<br />

2 = 1 2 , c4 = c 2<br />

4 = 1<br />

2 · 4 , c6 = c 4<br />

6 = 1<br />

2 · 4 · 6 , ...,<br />

c 2n = 1<br />

2 n n! . The other given condition is y0 (0) = 0. Buty 0 (0) = ∞ <br />

By the recursion relation, c 3 = c 1<br />

3<br />

problem is y(x) =<br />

∞ <br />

n =0<br />

11. Assuming that y(x) = ∞ <br />

y 00 (x)=<br />

c n x n =<br />

n =0<br />

∞ <br />

n =2<br />

n=1<br />

nc n (0) n−1 = c 1 +0+0+··· = c 1 ,soc 1 =0.<br />

=0, c5 =0, ..., c2n+1 =0for n =0, 1, 2, .... Thus, the solution to the initial-value<br />

∞ <br />

n =0<br />

c 2n x 2n =<br />

∞ <br />

n =0<br />

c nx n ,wehavexy = x ∞ <br />

n(n − 1)c n x n−2 =<br />

x 2n<br />

2 n n! = ∞<br />

n =0<br />

∞ <br />

n=−1<br />

c nx n =<br />

<br />

=2c 2 + ∞ (n +3)(n +2)c n+3 x n+1 ,<br />

n =0<br />

and the equation y 00 + x 2 y 0 + xy =0becomes 2c 2 + ∞ <br />

recursion relation is c n+3 =<br />

n =0<br />

(x 2 /2) n<br />

= e x2 /2 .<br />

n!<br />

∞ <br />

n =0<br />

c nx n+1 , x 2 y 0 = x 2<br />

∞ <br />

n =1<br />

nc nx n−1 =<br />

(n +3)(n +2)c n+3 x n+1 [replace n with n +3]<br />

n =0<br />

∞ <br />

n =0<br />

nc nx n+1 ,<br />

[(n +3)(n +2)c n+3 + nc n + c n] x n+1 =0.Soc 2 =0and the<br />

−nc n − c n (n +1)cn<br />

= − , n =0, 1, 2, ....Butc0 = y(0) = 0 = c2 and by the<br />

(n +3)(n +2) (n +3)(n +2)<br />

recursion relation, c 3n = c 3n+2 =0for n =0, 1, 2, ....Also,c 1 = y 0 (0) = 1, soc 4 = − 2c 1<br />

4 · 3 = − 2<br />

4 · 3 ,<br />

c 7 = − 5c4<br />

2 · 5<br />

2 2 5 2<br />

7 · 6 =(−1)2 7 · 6 · 4 · 3 =(−1)2 , ..., c 3n+1 =(−1) n 2 2 5 2 ·····(3n − 1) 2<br />

. Thus, the solution is<br />

7!<br />

(3n +1)!<br />

<br />

<br />

y(x) =<br />

∞ c n x n <br />

= x +<br />

(−1) ∞ n 2 2 5 2 ·····(3n − 1) 2 x 3n+1<br />

.<br />

(3n +1)!<br />

n =0<br />

n =1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!