30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

316 ¤ CHAPTER 18 SECOND-ORDER DIFFERENTIAL EQUATIONS ETX.10<br />

CHAPTER 17<br />

18.4 Series Solutions ET 17.4<br />

<br />

1. Let y(x) = ∞ c nx n .Theny 0 <br />

(x) = ∞ nc nx n−1 and the given equation, y 0 − y =0, becomes<br />

n=0<br />

n=1<br />

∞<br />

<br />

nc n x n−1 − ∞ <br />

c n x n =0. Replacing n by n +1in the first sum gives ∞ <br />

(n +1)c n+1 x n − ∞ c n x n =0,so<br />

n=1<br />

n=0<br />

∞<br />

[(n +1)c n+1 − c n ]x n =0. Equating coefficients gives (n +1)c n+1 − c n =0, so the recursion relation is<br />

n=0<br />

c n+1 =<br />

cn<br />

n +1 , n =0, 1, 2,....Thenc 1 = c 0 , c 2 = 1 2 c 1 = c0 2 , c 3 = 1 3 c 2 = 1 3 · 1<br />

2 c 0 = c0<br />

3! , c 4 = 1 4 c 3 = c0<br />

4! ,and<br />

in general, c n = c 0<br />

n! . Thus, the solution is y(x) = ∞ <br />

3. Assuming y(x) = ∞ <br />

−x 2 y = − ∞ <br />

n =0<br />

n =0<br />

c n x n ,wehavey 0 (x) =<br />

n =2<br />

n=0<br />

∞ <br />

n =1<br />

c n x n = ∞ <br />

n=0<br />

nc n x n−1 =<br />

n=0<br />

c 0<br />

∞<br />

n! xn = c 0<br />

∞ <br />

n =0<br />

n=0<br />

x n<br />

n! = c 0e x .<br />

(n +1)c n+1 x n and<br />

c nx n+2 <br />

= − ∞ c n−2x n . Hence, the equation y 0 = x 2 <br />

y becomes ∞ (n +1)c n+1x n <br />

− ∞ c n−2x n =0<br />

<br />

or c 1 +2c 2 x + ∞ [(n +1)c n+1 − c n−2 ] x n =0. Equating coefficients gives c 1 = c 2 =0and c n+1 = cn−2<br />

n +1<br />

n =2<br />

for n =2, 3, ....Butc 1 =0,soc 4 =0and c 7 =0and in general c 3n+1 =0. Similarly c 2 =0so c 3n+2 =0. Finally<br />

c 3 = c0 3 , c 6 = c3 6 =<br />

c0<br />

6 · 3 = c0<br />

3 2 · 2! , c 9 = c6 9 = c0<br />

9 · 6 · 3 = c0<br />

3 3 · 3! , ...,andc 3n = c0<br />

. Thus, the solution<br />

3 n · n!<br />

<br />

<br />

is y (x) =<br />

∞ <br />

c n x n =<br />

∞ <br />

c 3n x 3n =<br />

∞ c 0<br />

∞ x 3n<br />

3 n · n! x3n = c 0<br />

3 n n! = c ∞ x 3 /3 n<br />

0<br />

= c 0 e x3 /3 .<br />

n!<br />

n =0<br />

n =0<br />

n =0<br />

<br />

5. Let y (x) = ∞ c nx n ⇒ y 0 <br />

(x) = ∞ nc nx n−1 and y 00 <br />

(x) = ∞ (n +2)(n +1)c n+2x n . The differential equation<br />

n=0<br />

n=1<br />

<br />

becomes ∞ (n +2)(n +1)c n+2 x n <br />

+ x ∞ nc n x n−1 <br />

+ ∞ c n x n <br />

=0or ∞ [(n +2)(n +1)c n+2 + nc n + c n ]x n =0<br />

<br />

since<br />

n=0<br />

∞ <br />

n=1<br />

n=1<br />

n=0<br />

nc nx n <br />

= ∞ nc nx<br />

. n Equating coefficients gives (n +2)(n +1)c n+2 +(n +1)c n =0, thus the<br />

n=0<br />

recursion relation is c n+2 =<br />

n =0<br />

n=0<br />

n=0<br />

n =0<br />

n =0<br />

−(n +1)cn<br />

(n +2)(n +1) = − c n<br />

, n =0, 1, 2,.... Then the even<br />

n +2<br />

coefficients are given by c 2 = − c 0<br />

2 , c4 = − c 2<br />

4 = c 0<br />

2 · 4 , c6 = −c 4<br />

6 = − c 0<br />

, and in general,<br />

2 · 4 · 6<br />

c 2n =(−1) n c 0<br />

2 · 4 ·····2n = (−1)n c 0<br />

. The odd coefficients are c<br />

2 n 3 = − c 1<br />

n!<br />

3 , c5 = −c 3<br />

5 = c 1<br />

3 · 5 , c7 = −c 5<br />

7 = − c 1<br />

3 · 5 · 7 ,<br />

and in general, c 2n+1 =(−1) n c 1<br />

3 · 5 · 7 ·····(2n +1) = (−2)n n! c 1<br />

. The solution is<br />

(2n +1)!<br />

y (x) =c 0<br />

∞<br />

n=0<br />

(−1) n<br />

2 n n! x2n + c 1<br />

∞<br />

n=0<br />

(−2) n n!<br />

(2n +1)! x2n+1 .<br />

<br />

7. Let y (x) = ∞ c nx n ⇒ y 0 <br />

(x) = ∞ nc nx n−1 <br />

= ∞ (n +1)c n+1x n and y 00 <br />

(x) = ∞ (n +2)(n +1)c n+2x n .Then<br />

n=0<br />

n=1<br />

n=0<br />

(x−1)y 00 <br />

(x) = ∞ (n+2)(n+1)c n+2 x n+1 <br />

− ∞ (n+2)(n+1)c n+2 x n <br />

= ∞ n(n+1)c n+1 x n <br />

− ∞ (n+2)(n+1)c n+2 x n .<br />

n=0<br />

n=0<br />

n=1<br />

n=0<br />

n=0<br />

n=0<br />

n =2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!