30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION 18.3 APPLICATIONS TX.10 OF SECOND-ORDER DIFFERENTIAL EQUATIONS ET SECTION 17.3 ¤ 315<br />

9. The differential equation is mx 00 + kx = F 0 cos ω 0t and ω 0 6=ω = k/m. Here the auxiliary equation is mr 2 + k =0<br />

with roots ± k/m i = ±ωi so x c (t) =c 1 cos ωt + c 2 sin ωt. Sinceω 0 6=ω,tryx p (t) =A cos ω 0 t + B sin ω 0 t.<br />

Then we need (m) −ω 2 0 (A cos ω0 t + B sin ω 0 t)+k(A cos ω 0 t + B sin ω 0 t)=F 0 cos ω 0 t or A k − mω 2 0 = F0 and<br />

B <br />

k − mω 2 F 0<br />

F 0<br />

0 =0. Hence B =0and A = =<br />

k − mω 2 0 m(ω 2 − ω 2 0) since ω2 = k . Thus the motion of the mass is given<br />

m<br />

by x(t) =c 1 cos ωt + c 2 sin ωt +<br />

F 0<br />

m(ω 2 − ω 2 0 ) cos ω 0t.<br />

11. From Equation 6, x(t) =f(t)+g(t) where f(t) =c 1 cos ωt + c 2 sin ωt and g(t) =<br />

F 0<br />

m(ω 2 − ω 2 0 ) cos ω 0t. Thenf<br />

is periodic, with period 2π ,andifω 6=ω ω 0, g is periodic with period 2π<br />

ω 0<br />

.If ω ω 0<br />

is a rational number, then we can say<br />

ω<br />

ω 0<br />

= a b<br />

⇒ a = bω<br />

ω 0<br />

where a and b are non-zero integers. Then<br />

x t + a · 2π ω<br />

so x(t) is periodic.<br />

= f<br />

t + a · 2π<br />

ω<br />

<br />

+ g t + a · 2π<br />

ω = f(t)+g<br />

t + bω<br />

ω 0<br />

· 2π = f(t)+g t + b · 2π<br />

ω<br />

ω 0<br />

= f(t)+g(t) =x(t)<br />

13. Here the initial-value problem for the charge is Q 00 +20Q 0 +500Q =12, Q(0) = Q 0 (0) = 0. Then<br />

Q c (t) =e −10t (c 1 cos 20t + c 2 sin 20t) and try Q p (t) =A ⇒ 500A =12or A = 3<br />

125 .<br />

The general solution is Q(t) =e −10t (c 1 cos 20t + c 2 sin 20t)+ 3<br />

125 .But0=Q(0) = c 1 + 3<br />

125 and<br />

Q 0 (t) =I(t) =e −10t [(−10c 1 +20c 2) cos 20t +(−10c 2 − 20c 1)sin20t] but 0=Q 0 (0) = −10c 1 +20c 2. Thus the charge<br />

is Q(t) =− 1<br />

250 e−10t (6 cos 20t +3sin20t)+ 3<br />

125 and the current is I(t) =e−10t 3<br />

5<br />

<br />

sin 20t.<br />

15. As in Exercise 13, Q c (t) =e −10t (c 1 cos 20t + c 2 sin 20t) but E(t) =12sin10t so try<br />

Q p(t) =A cos 10t + B sin 10t. Substituting into the differential equation gives<br />

(−100A +200B +500A)cos10t +(−100B − 200A + 500B)sin10t =12sin10t<br />

⇒<br />

400A +200B =0and 400B − 200A =12. Thus A = − 3 , B = 3 and the general solution is<br />

250 125<br />

Q(t) =e −10t (c 1 cos 20t + c 2 sin 20t) − 3<br />

3<br />

cos 10t + sin 10t. But0=Q(0) = c 250 125 1 − 3 so c 250 1 = 3 . 250<br />

Also Q 0 (t) = 3 25 sin 10t + 6 25 cos 10t + e−10t [(−10c 1 +20c 2) cos 20t +(−10c 2 − 20c 1)sin20t] and<br />

0=Q 0 (0) = 6 − 10c 25 1 +20c 2 so c 2 = − 3 . Hence the charge is given by<br />

500<br />

Q(t) =e −10t 3<br />

3<br />

cos 20t − sin 20t − 3<br />

3<br />

cos 10t + sin 10t.<br />

250 500 250 125<br />

c1<br />

17. x(t) =A cos(ωt + δ) ⇔ x(t) =A[cos ωt cos δ − sin ωt sin δ ] ⇔ x(t) =A<br />

A cos ωt + c <br />

2<br />

A sin ωt where<br />

cos δ = c 1/A and sin δ = −c 2/A ⇔ x(t) =c 1 cos ωt + c 2 sin ωt. [Notethatcos 2 δ +sin 2 δ =1 ⇒ c 2 1 + c 2 2 = A 2 .]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!