30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

PROBLEMS PLUS<br />

1. Let S 1 be the portion of Ω(S) between S(a) and S,andlet∂S 1 be its boundary. Also let S L be the lateral surface of S 1 [that<br />

<br />

<br />

r · n<br />

r<br />

is, the surface of S 1 except S and S(a)]. Applying the Divergence Theorem we have<br />

dS = ∇ ·<br />

∂S 1<br />

r 3 S 1<br />

r dV . 3<br />

But<br />

⇒<br />

<br />

∇ ·<br />

∂S 1<br />

r · n<br />

r 3 dS =<br />

<br />

r ∂<br />

r = 3 ∂x , ∂ ∂y , ∂ <br />

<br />

x<br />

·<br />

∂z (x 2 + y 2 + z 2 ) , y<br />

3/2 (x 2 + y 2 + z 2 ) , z<br />

3/2 (x 2 + y 2 + z 2 ) 3/2<br />

= (x2 + y 2 + z 2 − 3x 2 )+(x 2 + y 2 + z 2 − 3y 2 )+(x 2 + y 2 + z 2 − 3z 2 )<br />

(x 2 + y 2 + z 2 ) 5/2 =0<br />

<br />

S 1<br />

0 dV =0. On the other hand, notice that for the surfaces of ∂S 1 other than S(a) and S,<br />

r · n =0 ⇒<br />

<br />

<br />

r · n<br />

0=<br />

dS =<br />

∂S 1<br />

r 3<br />

<br />

r · n<br />

r 3<br />

S<br />

S<br />

<br />

<br />

<br />

<br />

r · n<br />

r · n<br />

r · n r · n<br />

r · n<br />

dS +<br />

dS +<br />

dS = dS +<br />

dS ⇒<br />

r 3 S(a) r 3 S L<br />

r 3 S r 3 S(a) r 3<br />

<br />

r · n<br />

dS = −<br />

dS. NoticethatonS(a), r = a ⇒ n = − r<br />

S(a) r 3 r = − r a and r · r = r2 = a 2 ,so<br />

<br />

<br />

r · n<br />

r · r<br />

that −<br />

dS =<br />

S(a) r 3 S(a) a dS = a<br />

S(a)<br />

2<br />

4 a dS = 1 area of S (a)<br />

dS = = |Ω(S)|.<br />

4 a<br />

S(a)<br />

2 a 2<br />

<br />

r · n<br />

Therefore |Ω(S)| = dS.<br />

S r 3<br />

<br />

3. The given line integral 1 (bz − cy) dx +(cx − az) dy +(ay − bx) dz canbeexpressedas F · dr if we define the vector<br />

2 C C<br />

field F by F(x, y, z) =P i + Q j + R k = 1 (bz − cy) i + 1 (cx − az) j + 1 (ay − bx) k. Thendefine S to be the planar<br />

2 2 2<br />

interior of C,soS is an oriented, smooth surface. Stokes’ Theorem says F · dr = curl F · dS = curl F · n dS.<br />

C S S<br />

Now<br />

curl F =<br />

∂R<br />

∂y − ∂Q ∂P<br />

i +<br />

∂z ∂z − ∂R ∂Q<br />

j +<br />

∂x ∂x − ∂P <br />

k<br />

∂y<br />

= 1<br />

2 a + 1 2 a i + 1<br />

2 b + 1 2 b j + 1<br />

2 c + 1 2 c k = a i + b j + c k = n<br />

so curl F · n = n · n = |n| 2 =1, hence curl F · n dS = dS whichissimplythesurfaceareaofS. Thus,<br />

S S<br />

<br />

C F · dr = 1 2<br />

<br />

C (bz − cy) dx +(cx − az) dy +(ay − bx) dz is the plane area enclosed by C. 307

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!