30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

304 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

TX.10<br />

11.<br />

∂<br />

[(1 + ∂y xy)exy ]=2xe xy + x 2 ye xy =<br />

∂x ∂ e y + x 2 e xy and the domain of F is R 2 ,soF is conservative. Thus there<br />

exists a function f such that F = ∇f. Thenf y (x, y) =e y + x 2 e xy implies f(x, y) =e y + xe xy + g(x) and then<br />

f x(x, y) =xye xy + e xy + g 0 (x) =(1+xy)e xy + g 0 (x). Butf x(x, y) =(1+xy)e xy ,sog 0 (x) =0 ⇒ g(x) =K.<br />

Thus f(x, y) =e y + xe xy + K is a potential function for F.<br />

13. Since ∂<br />

∂y (4x3 y 2 − 2xy 3 )=8x 3 y − 6xy 2 = ∂<br />

∂x (2x4 y − 3x 2 y 2 +4y 3 ) and the domain of F is R 2 , F is conservative.<br />

Furthermore f(x, y) =x 4 y 2 − x 2 y 3 + y 4 is a potential function for F. t =0corresponds to the point (0, 1) and t =1<br />

corresponds to (1, 1),so F · dr = f(1, 1) − f(0, 1) = 1 − 1=0.<br />

C<br />

15. C 1 : r(t) =t i + t 2 j, −1 ≤ t ≤ 1;<br />

C 2 : r(t) =−t i + j, −1 ≤ t ≤ 1.<br />

Then<br />

C xy2 dx − x 2 ydy= 1<br />

−1 (t5 − 2t 5 ) dt + 1<br />

−1 tdt<br />

Using Green’s Theorem, we have<br />

<br />

C<br />

= − 1 6 t6 1<br />

−1 + 1<br />

2 t2 1<br />

−1 =0<br />

∂<br />

xy 2 dx − x 2 ydy=<br />

D ∂x (−x2 y) − ∂ <br />

1<br />

1<br />

∂y (xy2 ) dA = (−2xy − 2xy) dA =<br />

D<br />

−1<br />

17.<br />

C x2 ydx− xy 2 dy = <br />

= 1<br />

−1<br />

x 2 + y 2 ≤ 4<br />

−4xy dy dx<br />

x 2<br />

−2xy<br />

2 y=1<br />

dx = 1<br />

y=x 2 −1 (2x5 − 2x) dx = 1<br />

3 x6 − x 2 1<br />

=0 −1<br />

<br />

<br />

∂<br />

∂x (−xy2 ) − ∂<br />

∂y (x2 y) dA = (−y 2 − x 2 ) dA = − 2π 2<br />

0 r3 dr dθ = −8π<br />

x 2 + y 2 ≤ 4<br />

19. If we assume there is such a vector field G,thendiv(curl G) =2+3z − 2xz. Butdiv(curl F) =0for all vector fields F.<br />

Thus such a G cannot exist.<br />

21. For any piecewise-smooth simple closed plane curve C bounding a region D, we can apply Green’s Theorem to<br />

F(x, y) =f(x) i + g(y) j to get f(x) dx + g(y) dy = <br />

<br />

∂<br />

g(y) − ∂ f(x) dA = 0 dA =0.<br />

C D ∂x ∂y D<br />

23. ∇ 2 f =0means that ∂2 f<br />

∂x 2 + ∂2 f<br />

∂y 2<br />

=0.NowifF = f y i − f x j and C is any closed path in D,thenapplyingGreen’s<br />

Theorem, we get<br />

<br />

F · dr = f C C y dx − f x dy = <br />

<br />

∂<br />

(−f D ∂x x) − ∂ (f ∂y y) dA = − (f D xx + f yy ) dA = − 0 dA =0<br />

D<br />

Therefore the line integral is independent of path, by Theorem 17.3.3 [ ET 16.3.3].<br />

25. z = f (x, y) =x 2 +2y with 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x. Thus<br />

A(S) = D<br />

√<br />

1+4x2 +4dA = 1<br />

0<br />

2x<br />

0<br />

√<br />

5+4x2 dy dx = 1<br />

0 2x √ 5+4x 2 dx = 1 6 (5 + 4x2 ) 3/2 1<br />

0<br />

= 1 6<br />

27 − 5<br />

√<br />

5<br />

.<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!