30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

300 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

TX.10<br />

S 1<br />

F · dS = S 1<br />

F · n dS = S 1<br />

xdS = 2π<br />

0<br />

On S 2 , z =0, n = −k,andF = xy i so S 2<br />

F · dS = S 2<br />

0 dS =0.<br />

1 (r cos θ) rdrdθ= sin θ 2π 1 r3 1<br />

=0.<br />

0 0 3 0<br />

S 3 is given by r(θ, z) =cosθ i +sinθ j + z k, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1. Thenr θ × r z =cosθ i +sinθ j and<br />

S 3<br />

F · dS = F · (r D θ × r z ) dA = 2π<br />

1<br />

0 0 (cos2 θ sin θ + z sin 2 θ) dz dθ<br />

= 2π<br />

0<br />

Thus S F · dS =0+0+π 2 = π 2 .<br />

<br />

cos 2 θ sin θ + 1 2 sin2 θ dθ = <br />

− 1 3 cos3 θ + 1 4 θ −<br />

1<br />

sin 2θ 2π<br />

= π 2 0 2<br />

5. div F = ∂<br />

∂x (ex sin y)+ ∂<br />

∂y (ex cos y)+ ∂ ∂z (yz2 )=e x sin y − e x sin y +2yz =2yz, so by the Divergence Theorem,<br />

S F · dS = E div F dV = 1<br />

0<br />

1<br />

0<br />

2<br />

0 2yz dz dy dx =2 1<br />

0 dx 1<br />

0 ydy 1<br />

0 zdz=2 x 1<br />

0<br />

1 y2 1 1 z2 2<br />

=2.<br />

2 0 2 0<br />

7. div F =3y 2 +0+3z 2 , so using cylindrical coordinates with y = r cos θ, z = r sin θ, x = x we have<br />

S F · dS = E (3y2 +3z 2 ) dV = 2π<br />

1<br />

2<br />

0 0 −1 (3r2 cos 2 θ +3r 2 sin 2 θ) rdxdrdθ<br />

=3 2π<br />

dθ 1<br />

0 0 r3 dr 2<br />

dx =3(2π) <br />

1<br />

−1 4 (3) =<br />

9π<br />

2<br />

9. div F = y sin z +0− y sin z =0, so by the Divergence Theorem, F · dS = 0 dV =0.<br />

S E<br />

11. div F = y 2 +0+x 2 = x 2 + y 2 so<br />

S F · dS = E (x2 + y 2 ) dV = 2π<br />

0<br />

2<br />

0<br />

4<br />

r 2 · rdzdrdθ= 2π<br />

2<br />

r 2 0 0<br />

= 2π<br />

0<br />

dθ 2<br />

0 (4r3 − r 5 ) dr =2π r 4 − 1 6 r6 2<br />

0 = 32 3 π<br />

r3 (4 − r 2 ) dr dθ<br />

13. div F =12x 2 z +12y 2 z +12z 3 so<br />

S F · dS = E 12z(x2 + y 2 + z 2 ) dV = 2π<br />

π<br />

R 12(ρ cos 0 0 0<br />

φ)(ρ2 )ρ 2 sin φdρdφdθ<br />

=12 2π<br />

dθ π<br />

sin φ cos φdφ R<br />

0 0 0 ρ5 dρ =12(2π) 1<br />

2 sin2 φ π 1 ρ6 R<br />

=0<br />

0 6 0<br />

<br />

15. F · dS = √<br />

S E 3 − x2 dV = 1<br />

1<br />

−1 −1<br />

2 − x<br />

4 − y<br />

4<br />

0<br />

√<br />

3 − x2 dz dy dx = 341<br />

60<br />

√ √3 <br />

2+<br />

81<br />

20 sin−1 3<br />

17. For S 1 we have n = −k,soF · n = F · (−k) =−x 2 z − y 2 = −y 2 (since z =0on S 1 ). So if D is the unit disk, we get<br />

S 1<br />

F · dS = S 1<br />

F · n dS = D (−y2 ) dA = − 2π 1<br />

0 0 r2 (sin 2 θ) rdrdθ = − 1 π.NowsinceS 4 2 is closed, we can use<br />

<br />

the Divergence Theorem. Since div F = ∂<br />

∂x (z2 x)+ ∂ 1<br />

∂y 3 y3 +tanz + ∂ ∂z (x2 z + y 2 )=z 2 + y 2 + x 2 , we use spherical<br />

coordinates to get S 2<br />

F · dS = E div F dV = 2π<br />

0<br />

S F · dS = S 2<br />

F · dS − S 1<br />

F · dS = 2 5 π − − 1 4 π = 13<br />

20 π.<br />

π/2<br />

1<br />

0 0 ρ2 · ρ 2 sin φdρdφdθ = 2 π.Finally<br />

5<br />

19. The vectors that end near P 1 are longer than the vectors that start near P 1 ,sothenetflow is inward near P 1 and div F(P 1 ) is<br />

negative. The vectors that end near P 2 are shorter than the vectors that start near P 2, so the net flow is outward near P 2 and<br />

div F(P 2 ) is positive.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!