30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

298 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

TX.10<br />

5. C is the square in the plane z = −1. By(3), S 1<br />

curl F · dS = C F · dr = S 2<br />

curl F · dS where S 1 is the original cube<br />

without the bottom and S 2 is the bottom face of the cube. curl F = x 2 z i +(xy − 2xyz) j +(y − xz) k. ForS 2 , we choose<br />

n = k so that C has the same orientation for both surfaces. Then curl F · n = y − xz = x + y on S 2 ,wherez = −1. Thus<br />

S 2<br />

curl F · dS = 1<br />

−1<br />

1<br />

−1 (x + y) dx dy =0so S 1<br />

curl F · dS =0.<br />

7. curl F = −2z i − 2x j − 2y k and we take the surface S to be the planar region enclosed by C,soS is the portion of the plane<br />

x + y + z =1over D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}. SinceC is oriented counterclockwise, we orient S upward.<br />

Using Equation 17.7.10 [ ET 16.7.10], we have z = g(x, y) =1− x − y, P = −2z, Q = −2x, R = −2y,and<br />

<br />

F · dr = curl F · dS = [−(−2z)(−1) − (−2x)(−1) + (−2y)] dA<br />

C S D<br />

= 1<br />

0<br />

1−x<br />

0<br />

(−2) dy dx = −2 1<br />

0<br />

(1 − x) dx = −1<br />

9. curl F =(xe xy − 2x) i − (ye xy − y) j +(2z − z) k and we take S to be the disk x 2 + y 2 ≤ 16, z =5.SinceC is oriented<br />

counterclockwise (from above), we orient S upward. Then n = k and curl F · n =2z − z on S,wherez =5. Thus<br />

<br />

F · dr =<br />

<br />

S curl F · n dS= S (2z − z) dS = S (10 − 5) dS =5(areaofS) =5(π · 42 )=80π<br />

11. (a) The curve of intersection is an ellipse in the plane x + y + z =1with unit normal n = 1 √<br />

3<br />

(i + j + k),<br />

curl F = x 2 j + y 2 k,andcurl F · n = 1 √<br />

3<br />

(x 2 + y 2 ).Then<br />

<br />

C F · dr = S<br />

1<br />

√<br />

3<br />

x 2 + y 2 dS = x 2 + y 2 ≤ 9<br />

x 2 + y 2 dx dy = 2π<br />

0<br />

3<br />

0 r3 dr dθ =2π <br />

81<br />

4 =<br />

81π<br />

2<br />

(b)<br />

(c) One possible parametrization is x =3cost, y =3sint,<br />

z =1− 3cost − 3sint, 0 ≤ t ≤ 2π.<br />

13. The boundary curve C is the circle x 2 + y 2 =1, z =1oriented in the counterclockwise direction as viewed from above.<br />

We can parametrize C by r(t) =cost i +sint j + k, 0 ≤ t ≤ 2π, andthenr 0 (t) =− sin t i +cost j. Thus<br />

F(r(t)) = sin 2 t i +cost j + k, F(r(t)) · r 0 (t) =cos 2 t − sin 3 t,and<br />

C F · dr = 2π<br />

0 (cos2 t − sin 3 t) dt = 2π 1<br />

(1 + cos 2t) dt − 2π<br />

(1 − 0 2 0 cos2 t)sintdt<br />

<br />

= 1 2 t +<br />

1<br />

sin 2t 2π<br />

− <br />

2<br />

− cos t + 1 0 3 cos3 t 2π<br />

= π<br />

0<br />

Now curl F =(1− 2y) k, and the projection D of S on the xy-plane is the disk x 2 + y 2 ≤ 1, so by Equation 17.7.10<br />

[ ET 16.7.10] with z = g(x, y) =x 2 + y 2 we have<br />

S curl F · dS = D (1 − 2y) dA = 2π<br />

0<br />

1<br />

0 (1 − 2r sin θ) rdrdθ= 2π<br />

0<br />

1<br />

2 − 2 3 sin θ dθ = π.<br />

15. The boundary curve C is the circle x 2 + z 2 =1, y =0oriented in the counterclockwise direction as viewed from the positive<br />

y-axis. Then C can be described by r(t) =cost i − sin t k, 0 ≤ t ≤ 2π,andr 0 (t) =− sin t i − cos t k. Thus

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!