30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 17.8 STOKES’ THEOREM ET SECTION 16.8 ¤ 297<br />

43. S consists of the hemisphere S 1 given by z = a 2 − x 2 − y 2 and the disk S 2 given by 0 ≤ x 2 + y 2 ≤ a 2 , z =0.<br />

On S 1 : E = a sin φ cos θ i + a sin φ sin θ j +2a cos φ k,<br />

T φ × T θ = a 2 sin 2 φ cos θ i + a 2 sin 2 φ sin θ j + a 2 sin φ cos φ k. Thus<br />

S 1<br />

E · dS = 2π π/2<br />

(a 3 sin 3 φ +2a 3 sin φ cos 2 φ) dφ dθ<br />

0 0<br />

= 2π π/2<br />

(a 3 sin φ + a 3 sin φ cos 2 φ) dφ dθ =(2π)a 3 <br />

1+ 1 0 0 3 =<br />

8<br />

3 πa3<br />

On S 2: E = x i + y j,andr y × r x = −k so S 2<br />

E · dS =0. Hence the total charge is q = ε 0<br />

S E · dS = 8 3 πa3 ε 0.<br />

45. K∇u =6.5(4y j +4z k). S is given by r(x, θ) =x i + √ 6cosθ j + √ 6sinθ k and since we want the inward heat flow, we<br />

use r x × r θ = − √ 6cosθ j − √ 6sinθ k. Then the rate of heat flow inward is given by<br />

S (−K ∇u) · dS = 2π 4<br />

−(6.5)(−24) dx dθ =(2π)(156)(4) = 1248π.<br />

0 0<br />

47. Let S be a sphere of radius a centered at the origin. Then |r| = a and F(r) =cr/ |r| 3 = c/a 3 (x i + y j + z k). A<br />

parametric representation for S is r(φ, θ) =a sin φ cos θ i + a sin φ sin θ j + a cos φ k, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π. Then<br />

r φ = a cos φ cos θ i + a cos φ sin θ j − a sin φ k, r θ = −a sin φ sin θ i + a sin φ cos θ j, and the outward orientation is given<br />

by r φ × r θ = a 2 sin 2 φ cos θ i + a 2 sin 2 φ sin θ j + a 2 sin φ cos φ k. Theflux of F across S is<br />

S F · dS = π<br />

2π c<br />

(a sin φ cos θ i + a sin φ sin θ j + a cos φ k)<br />

0 0<br />

a3 = c<br />

a 3 π<br />

0<br />

Thus the flux does not depend on the radius a.<br />

· a 2 sin 2 φ cos θ i + a 2 sin 2 φ sin θ j + a 2 sin φ cos φ k dθ dφ<br />

2π<br />

a 3 sin 3 φ +sinφ cos 2 φ dθ dφ = c π<br />

2π<br />

sin φdθdφ=4πc<br />

0 0 0<br />

17.8 Stokes' Theorem ET 16.8<br />

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve x 2 + y 2 =4,<br />

z =0(whichwecantaketobeorientedpositivelyforbothsurfaces).ThenH and P satisfy the hypotheses of Stokes’<br />

Theorem, so by (3) we know curl F · dS = F · dr = curl F · dS (where C is the boundary curve).<br />

H C P<br />

3. The paraboloid z = x 2 + y 2 intersects the cylinder x 2 + y 2 =4in the circle x 2 + y 2 =4, z =4. This boundary curve C<br />

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C is<br />

r(t) =2cost i +2sint j +4k, 0 ≤ t ≤ 2π. Thenr 0 (t) =−2sint i +2cost j,<br />

F(r(t)) = (4 cos 2 t)(16) i +(4sin 2 t)(16) j +(2cost)(2 sin t)(4) k =64cos 2 t i +64sin 2 t j +16sint cos t k,<br />

andbyStokes’Theorem,<br />

S curl F · dS = C F · dr = 2π<br />

0<br />

F(r(t)) · r 0 (t) dt = 2π<br />

0 (−128 cos2 t sin t +128sin 2 t cos t +0)dt<br />

=128 1<br />

3 cos3 t + 1 3 sin3 t 2π<br />

=0<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!