30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

296 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

TX.10<br />

31. z = xy ⇒ ∂z/∂x = y, ∂z/∂y = x, so by Formula 4, a CAS gives<br />

S xyz dS = 1 1 xy(xy) y<br />

0 0 2 + x 2 +1dx dy ≈ 0.1642.<br />

33. We use Formula 4 with z =3− 2x 2 − y 2 ⇒ ∂z/∂x = −4x, ∂z/∂y = −2y. The boundaries of the region<br />

<br />

3 − 2x 2 − y 2 3<br />

≥ 0 are − ≤ x ≤ 3<br />

and −√ 3 − 2x<br />

2 2 2 ≤ y ≤ √ 3 − 2x 2 ,soweuseaCAS(withprecisionreducedto<br />

seven or fewer digits; otherwise the calculation may take a long time) to calculate<br />

<br />

S<br />

√<br />

x 2 y 2 z 2 3/2<br />

√ 3 − 2x 2<br />

dS = √ x<br />

− 3/2 −<br />

√3 2 y 2 (3 − 2x 2 − y 2 ) 2 16x 2 +4y 2 +1dy dx ≈ 3.4895<br />

− 2x 2<br />

35. If S is given by y = h(x, z), thenS is also the level surface f(x, y, z) =y − h(x, z) =0.<br />

∇f(x, y, z)<br />

n =<br />

|∇f(x, y, z)| = −h x i + j − h z k<br />

√ ,and−n is the unit normal that points to the left. Now we proceed as in the<br />

h<br />

2 x +1+h 2 z<br />

derivation of (10), using Formula 4 to evaluate<br />

<br />

S<br />

<br />

<br />

∂h<br />

F · dS = F · n dS = (P i + Q j + R k) ∂x i − j + ∂h<br />

∂z k ∂h<br />

∂h <br />

S<br />

D<br />

2 2 ∂h<br />

∂x<br />

+1+<br />

∂x<br />

∂z<br />

2<br />

+1+<br />

<br />

where D is the projection of S onto the xz-plane. Therefore F · dS = P ∂h<br />

S<br />

D ∂x − Q + R ∂h <br />

dA.<br />

∂z<br />

37. m = S KdS = K · 4π 1<br />

2 a2 =2πa 2 K;bysymmetryM xz = M yz =0,and<br />

M xy = zK dS = K 2π π/2<br />

(a cos φ)(a 2 sin φ) dφ dθ =2πKa 3 − 1 cos 2φ π/2<br />

S 0 0 4<br />

= πKa 3 .<br />

0<br />

Hence (x, y, z) = 0, 0, 1 2 a .<br />

39. (a) I z = S (x2 + y 2 )ρ(x, y, z) dS<br />

(b) I z = S (x2 + y 2 )<br />

10 − <br />

x 2 + y 2 dS =<br />

= 2π<br />

0<br />

4<br />

1<br />

√<br />

2(10r 3 − r 4 ) dr dθ =2 √ 2 π 4329<br />

10<br />

<br />

1 ≤ x 2 + y 2 ≤ 16<br />

<br />

=<br />

4329<br />

5<br />

<br />

(x 2 + y 2 ) 10 − √2<br />

x 2 + y 2 dA<br />

√<br />

2 π<br />

2 ∂h<br />

dA<br />

∂z<br />

41. Therateofflow through the cylinder is the flux ρv · n dS = ρv · dS. We use the parametric representation<br />

S S<br />

r(u, v) =2cosu i +2sinu j + v k for S,where0 ≤ u ≤ 2π, 0 ≤ v ≤ 1,sor u = −2sinu i +2cosu j, r v = k,andthe<br />

outward orientation is given by r u × r v =2cosu i +2sinu j. Then<br />

S ρv · dS = ρ 2π<br />

1<br />

<br />

0 0 v i +4sin 2 u j +4cos 2 u k · (2 cos u i +2sinu j) dv du<br />

= ρ 2π<br />

0<br />

1<br />

0<br />

= ρ sin u +8 − 1 3<br />

<br />

2v cos u +8sin 3 u dv du = ρ 2π<br />

<br />

0 cos u +8sin 3 u du<br />

<br />

(2 + sin 2 u)cosu 2π<br />

0<br />

=0kg/s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!