30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

SECTION 17.7 SURFACE INTEGRALS ET SECTION 16.7 ¤ 295<br />

25. Let S 1 be the paraboloid y = x 2 + z 2 , 0 ≤ y ≤ 1 and S 2 the disk x 2 + z 2 ≤ 1, y =1.SinceS is a closed<br />

surface, we use the outward orientation.<br />

On S 1 : F(r(x, z)) = (x 2 + z 2 ) j − z k and r x × r z =2x i − j +2z k (since the j-component must be negative on S 1 ). Then<br />

S 1<br />

F · dS = [−(x 2 + z 2 ) − 2z 2 ] dA = − 2π 1<br />

0 (r2 +2r 2 cos 2 θ) rdrdθ<br />

x 2 + z 2 ≤ 1<br />

= − 2π 1<br />

(1 + 2 0 4 cos2 θ) dθ = − π<br />

+ π<br />

2 2 = −π<br />

On S 2 : F(r(x, z)) = j − z k and r z × r x = j. Then S 2<br />

F · dS =<br />

(1) dA = π.<br />

Hence F · dS = −π + π =0.<br />

S<br />

0<br />

x 2 + z 2 ≤ 1<br />

27. Here S consists of the six faces of the cube as labeled in the figure. On S 1:<br />

F = i +2y j +3z k, r y × r z = i and S 1<br />

F · dS = 1<br />

1<br />

dy dz =4;<br />

−1 −1<br />

S 2 : F = x i +2j +3z k, r z × r x = j and S 2<br />

F · dS = 1<br />

1<br />

2 dx dz =8;<br />

−1 −1<br />

S 3: F = x i +2y j +3k, r x × r y = k and S 3<br />

F · dS = 1<br />

1<br />

3 dx dy =12;<br />

−1 −1<br />

S 4: F = −i +2y j +3z k, r z × r y = −i and S 4<br />

F · dS =4;<br />

S 5 : F = x i − 2 j +3z k, r x × r z = −j and S 5<br />

F · dS =8;<br />

S 6: F = x i +2y j − 3 k, r y × r x = −k and S 6<br />

F · dS = 1<br />

1<br />

3 dx dy =12.<br />

−1 −1<br />

Hence F · dS = 6<br />

<br />

S i=1 S i<br />

F · dS =48.<br />

29. Here S consists of four surfaces: S 1 , the top surface (a portion of the circular cylinder y 2 + z 2 =1); S 2 , the bottom surface<br />

(a portion of the xy-plane); S 3, the front half-disk in the plane x =2,andS 4, the back half-disk in the plane x =0.<br />

On S 1: The surface is z = 1 − y 2 for 0 ≤ x ≤ 2, −1 ≤ y ≤ 1 with upward orientation, so<br />

<br />

2<br />

<br />

1<br />

<br />

F · dS =<br />

−x 2 (0) − y 2 y<br />

2<br />

<br />

<br />

1<br />

− + z 2 y 3<br />

dy dx = +1−<br />

S 1 0 −1<br />

1 − y<br />

2<br />

0 −1 1 − y<br />

2 y2 dy dx<br />

= 2<br />

− y=1<br />

1 − y<br />

0<br />

2 + 1 (1 − 3 y2 ) 3/2 + y − 1 3 y3 dx = 2 4<br />

dx = 8<br />

0 3 3<br />

On S 2 : The surface is z =0with downward orientation, so<br />

S 2<br />

F · dS = 2<br />

0<br />

y=−1<br />

1<br />

−1<br />

<br />

−z<br />

2 dy dx = 2<br />

0<br />

1<br />

(0) dy dx =0<br />

−1<br />

On S 3 :Thesurfaceisx =2for −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y 2 , oriented in the positive x-direction. Regarding y and z as<br />

parameters, we have r y × r z = i and<br />

S 3<br />

F · dS = 1<br />

√ 1−y 2<br />

x 2 dz dy = 1<br />

√ 1−y 2<br />

4 dz dy =4A (S<br />

−1 0 −1 0 3)=2π<br />

On S 4 :Thesurfaceisx =0for −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y 2 , oriented in the negative x-direction. Regarding y and z as<br />

parameters, we use − (r y × r z )=−i and<br />

Thus S F · dS = 8 3 +0+2π +0=2π + 8 3 .<br />

S 4<br />

F · dS = 1<br />

√ 1−y 2<br />

x 2 dz dy = 1<br />

√ 1−y 2<br />

(0) dz dy =0<br />

−1 0 −1 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!