30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 17.7 SURFACE INTEGRALS ET SECTION 16.7 ¤ 293<br />

3. We can use the xz-andyz-planes to divide H into four patches of equal size, each with surface area equal to 1 8<br />

the surface<br />

area of a sphere with radius √ 50,so∆S = 1 8 (4)π√ 50 2<br />

=25π. Then(±3, ±4, 5) are sample points in the four patches,<br />

and using a Riemann sum as in Definition 1, we have<br />

<br />

f(x, y, z) dS ≈ f(3, 4, 5) ∆S + f(3, −4, 5) ∆S + f(−3, 4, 5) ∆S + f(−3, −4, 5) ∆S<br />

5. z =1+2x +3y so ∂z ∂z<br />

=2and<br />

∂x<br />

H<br />

<br />

<br />

S x2 yz dS =<br />

D<br />

= √ 14 3<br />

0<br />

=(7+8+9+12)(25π) =900π ≈ 2827<br />

∂y =3.ThenbyFormula4,<br />

2 ∂z ∂z<br />

+<br />

∂x ∂y<br />

x 2 yz<br />

2<br />

+1dA = 3<br />

2<br />

0 0 x2 y(1 + 2x +3y) √ 4+9+1dy dx<br />

2<br />

0 (x2 y +2x 3 y +3x 2 y 2 ) dy dx = √ 14 3<br />

1<br />

0 2 x2 y 2 + x 3 y 2 + x 2 y 3 y=2<br />

dx y=0<br />

= √ 14 3<br />

0 (10x2 +4x 3 ) dx = √ 14 10<br />

3 x3 + x 4 3<br />

0 = 171 √ 14<br />

7. S is the part of the plane z =1− x − y over the region D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}. Thus<br />

S yz dS = y(1 − x − y) (−1)<br />

D 2 +(−1) 2 +1dA = √ 3 1<br />

1−x<br />

<br />

0 0 y − xy − y<br />

2<br />

dy dx<br />

= √ 3 1<br />

1<br />

0 2 y2 − 1 2 xy2 − 1 y3 y=1−x<br />

3<br />

dx = √ 3 1 1<br />

(1 − y=0 0 6 x)3 dx = − √ 1<br />

3<br />

(1 − 24 x)4 = √ 3<br />

24<br />

0<br />

9. r(u, v) =u 2 i + u sin v j + u cos v k, 0 ≤ u ≤ 1, 0 ≤ v ≤ π/2, so<br />

r u × r v =(2u i +sinv j +cosv k) × (u cos v j − u sin v k) =−u i +2u 2 sin v j +2u 2 cos v k and<br />

|r u × r v| = u 2 +4u 4 sin 2 v +4u 4 cos 2 v = u 2 +4u 4 (sin 2 v +cos 2 v)=u √ 1+4u 2 (since u ≥ 0). Then by<br />

Formula 2,<br />

S yz dS = (u sin v)(u cos v) D |ru × rv| dA = π/2<br />

1 (u sin v)(u cos v) · u √ 1+4u<br />

0 0 2 du dv<br />

= 1<br />

√<br />

0 u3 1+4u 2 du π/2<br />

<br />

sin v cos vdv<br />

0 let t =1+4u<br />

2<br />

⇒ u 2 = 1 (t − 1) and 1 dt = udu<br />

4 8<br />

= 5 1 · 1 (t − 1)√ tdt π/2<br />

<br />

sin v cos vdv= 1 5<br />

t 3/2 − √ <br />

t dt π/2<br />

sin v cos vdv<br />

1 8 4 0 32 1<br />

0<br />

= 1 32<br />

<br />

5 <br />

2<br />

5 t5/2 − 2 1<br />

3 t3/2 2 sin2 v π/2<br />

= 1<br />

1<br />

0 32<br />

<br />

<br />

2<br />

5 (5)5/2 − 2 3 (5)3/2 − 2 + 2 5 3<br />

√<br />

· 1<br />

5<br />

(1 − 0) =<br />

2 48 5+<br />

1<br />

240<br />

11. S is the portion of the cone z 2 = x 2 + y 2 for 1 ≤ z ≤ 3, or equivalently, S is the part of the surface z = x 2 + y 2 over the<br />

region D = (x, y) | 1 ≤ x 2 + y 2 ≤ 9 .Thus<br />

<br />

<br />

<br />

<br />

2<br />

x 2 z 2 dS = x 2 (x 2 + y 2 )<br />

x<br />

+<br />

S<br />

D<br />

x2 + y 2<br />

<br />

= x 2 (x 2 + y 2 )<br />

D<br />

<br />

<br />

x 2 + y 2<br />

x 2 + y 2 +1dA = D<br />

y<br />

<br />

x2 + y 2 2<br />

+1dA<br />

√<br />

2 x 2 (x 2 + y 2 ) dA = √ 2<br />

2π<br />

0<br />

3<br />

1<br />

(r cos θ) 2 (r 2 ) rdrdθ<br />

= √ 2 2π<br />

cos 2 θdθ 3<br />

0 1 r5 dr = √ 2 1<br />

θ + 1 sin 2θ 2π 1 r6 3<br />

= √<br />

2 4 0 6<br />

2(π) · 1<br />

1 6 (36 − 1) = 364 √ 2<br />

π<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!