30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

<br />

<br />

51. (a) A(S) = 1+<br />

D<br />

2 ∂z<br />

+<br />

∂x<br />

∂z<br />

∂y<br />

Using the Midpoint Rule with f(x, y) =<br />

A(S) ≈<br />

3 <br />

i =1j =1<br />

(b) Using a CAS we have A(S) =<br />

to the first decimal place.<br />

53. z =1+2x +3y +4y 2 ,so<br />

<br />

<br />

A(S) = 1+<br />

D<br />

Using a CAS, we have<br />

4<br />

1<br />

1<br />

0<br />

or 45<br />

8<br />

SECTIONTX.10<br />

17.6 PARAMETRIC SURFACES AND THEIR AREAS ET SECTION 16.6 ¤ 291<br />

2<br />

dA =<br />

6<br />

<br />

0<br />

4<br />

0<br />

<br />

1+ 4x2 +4y 2<br />

dy dx.<br />

(1 + x 2 + y 2 )<br />

4<br />

1+ 4x2 +4y 2<br />

, m =3, n =2we have<br />

(1 + x 2 + y 2 )<br />

4<br />

2<br />

f <br />

x i , y j ∆A =4[f(1, 1) + f(1, 3) + f(3, 1) + f(3, 3) + f(5, 1) + f(5, 3)] ≈ 24.2055<br />

2 ∂z<br />

+<br />

∂x<br />

6<br />

4<br />

0<br />

∂z<br />

∂y<br />

<br />

14 + 48y +64y2 dy dx = 45<br />

8<br />

√<br />

14 +<br />

15<br />

ln 11 √ 5+3 √ 70<br />

16 3 √ 5+ √ . 70<br />

0<br />

<br />

2<br />

dA =<br />

4<br />

1+ 4x2 +4y 2<br />

dy dx ≈ 24.2476. This agrees with the estimate in part (a)<br />

(1 + x 2 + y 2 )<br />

4<br />

1<br />

1<br />

0<br />

<br />

1+4+(3+8y)2 dy dx =<br />

4<br />

1<br />

1<br />

√<br />

14 +<br />

15<br />

16 ln 11 √ 5+3 √ 14 √ 5 − 15<br />

16 ln 3 √ 5+ √ 14 √ 5 <br />

0<br />

<br />

14 + 48y +64y2 dy dx.<br />

55. (a) x = a sin u cos v, y = b sin u sin v, z = c cos u ⇒<br />

x 2<br />

a + y2<br />

2 b + z2<br />

2 c =(sinu cos 2 v)2 +(sinu sin v) 2 +(cosu) 2<br />

=sin 2 u +cos 2 u =1<br />

and since the ranges of u and v are sufficient to generate the entire graph,<br />

the parametric equations represent an ellipsoid.<br />

(b)<br />

(c) From the parametric equations (with a =1, b =2,andc =3), we calculate<br />

r u =cosu cos v i +2cosu sin v j − 3sinu k and r v = − sin u sin v i +2sinu cos v j. So<br />

r u × r v =6sin 2 u cos v i +3sin 2 u sin v j +2sinu cos u k, and the surface area is given by<br />

A(S) = 2π<br />

0<br />

π<br />

0<br />

|ru × rv| du dv = 2π<br />

0<br />

π<br />

0<br />

<br />

36 sin 4 u cos 2 v +9sin 4 u sin 2 v +4cos 2 u sin 2 ududv<br />

57. To find the region D: z = x 2 + y 2 implies z + z 2 =4z or z 2 − 3z =0.Thusz =0or z =3are the planes where the<br />

surfaces intersect. But x 2 + y 2 + z 2 =4z implies x 2 + y 2 +(z − 2) 2 =4,soz =3intersects the upper hemisphere.<br />

Thus (z − 2) 2 =4− x 2 − y 2 or z =2+ 4 − x 2 − y 2 . Therefore D is the region inside the circle x 2 + y 2 +(3− 2) 2 =4,<br />

that is, D = (x, y) | x 2 + y 2 ≤ 3 .<br />

<br />

A(S) = 1+[(−x)(4 − x 2 − y 2 ) −1/2 ] 2 +[(−y)(4 − x 2 − y 2 ) −1/2 ] 2 dA<br />

D<br />

2π<br />

√ <br />

3<br />

2π<br />

√<br />

=<br />

1+ r2<br />

3<br />

<br />

4 − r rdrdθ= 2rdr<br />

2π<br />

√<br />

−2(4 dθ = − r 2 ) 1/2 r= √ 3<br />

2 4 − r<br />

2 r=0<br />

0<br />

0<br />

= 2π<br />

0 (−2+4)dθ =2θ 2π<br />

0<br />

=4π<br />

0<br />

0<br />

0<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!