30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

286 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

i j k<br />

(b) From (a), v = w × r =<br />

0 0 ω<br />

=(0· z − ωy) i +(ωx − 0 · z) j +(0· y − x · 0) k = −ωy i + ωx j<br />

<br />

x y z<br />

<br />

i j k<br />

(c) curl v = ∇ × v =<br />

∂/∂x ∂/∂y ∂/∂z<br />

<br />

−ωy ωx 0<br />

<br />

∂<br />

=<br />

∂y (0) − ∂ <br />

∂z (ωx) i +<br />

=[ω − (−ω)] k =2ω k =2w<br />

TX.10<br />

∂<br />

∂z (−ωy) − ∂<br />

∂x (0) <br />

j +<br />

∂<br />

∂x (ωx) − ∂ ∂y (−ωy) <br />

k<br />

39. For any continuous function f on R 3 ,defineavectorfield G(x, y, z) =hg(x, y, z), 0, 0i where g(x, y, z) = x<br />

f (t, y, z) dt.<br />

0<br />

Then div G = ∂<br />

∂x (g(x, y, z)) + ∂ ∂y (0) + ∂ ∂z (0) = ∂ x<br />

f(t, y, z) dt = f(x, y, z) by the Fundamental Theorem of<br />

∂x<br />

0<br />

Calculus. Thus every continuous function f on R 3 is the divergence of some vector field.<br />

17.6 Parametric Surfaces and Their Areas ET 16.6<br />

1. P (7, 10, 4) lies on the parametric surface r(u, v) =h2u +3v, 1+5u − v, 2+u + vi if and only if there are values for u<br />

and v where 2u +3v =7, 1+5u − v =10,and2+u + v =4.Butsolvingthefirst two equations simultaneously gives<br />

u =2, v =1and these values do not satisfy the third equation, so P does not lie on the surface.<br />

Q(5, 22, 5) lies on the surface if 2u +3v =5, 1+5u − v =22,and2+u + v =5for some values of u and v. Solving the<br />

first two equations simultaneously gives u =4, v = −1 and these values satisfy the third equation, so Q lies on the surface.<br />

3. r(u, v) =(u + v) i +(3− v) j +(1+4u +5v) k = h0, 3, 1i + u h1, 0, 4i + v h1, −1, 5i. From Example 3, we recognize<br />

this as a vector equation of a plane through the point (0, 3, 1) and containing vectors a = h1, 0, 4i and b = h1, −1, 5i. Ifwe<br />

i j k<br />

wish to find a more conventional equation for the plane, a normal vector to the plane is a × b =<br />

1 0 4<br />

=4i − j − k<br />

<br />

1 −1 5<br />

<br />

andanequationoftheplaneis4(x − 0) − (y − 3) − (z − 1) = 0 or 4x − y − z = −4.<br />

5. r(s, t) = s, t, t 2 − s 2 , so the corresponding parametric equations for the surface are x = s, y = t, z = t 2 − s 2 .Forany<br />

point (x, y, z) onthesurface,wehavez = y 2 − x 2 . With no restrictions on the parameters, the surface is z = y 2 − x 2 ,which<br />

we recognize as a hyperbolic paraboloid.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!