30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10 SECTION 17.5 CURL AND DIVERGENCE ET SECTION 16.5 ¤ 285<br />

<br />

∂<br />

grad(div F) −∇ 2 2 P 1<br />

F =<br />

∂x + ∂2 Q 1<br />

2 ∂x∂y + ∂2 R 1 ∂ 2 P 1<br />

i +<br />

∂x∂z ∂y∂x + ∂2 Q 1<br />

∂y + ∂2 R 1 ∂ 2 P 1<br />

j +<br />

2 ∂y∂z ∂z∂x + ∂2 Q 1<br />

∂z∂y + ∂2 R 1<br />

k<br />

∂z 2<br />

<br />

∂ 2 P 1<br />

−<br />

∂x + ∂2 P 1<br />

2 ∂y + ∂2 P 1 ∂ 2 Q 1<br />

i +<br />

2 ∂z 2 ∂x + ∂2 Q 1<br />

2 ∂y + ∂2 Q 1<br />

j<br />

2 ∂z 2<br />

<br />

∂ 2 R 1<br />

+<br />

∂x + ∂2 R 1<br />

2 ∂y + ∂2 R 1<br />

k<br />

2 ∂z 2<br />

<br />

∂ 2 Q 1<br />

=<br />

∂x∂y + ∂2 R 1<br />

∂x∂z − ∂2 P 1<br />

∂y − ∂2 P 1 ∂ 2 P 1<br />

i +<br />

2 ∂z 2 ∂y∂x + ∂2 R 1<br />

∂y∂z − ∂2 Q 1<br />

∂x − ∂2 Q 1<br />

j<br />

2 ∂z 2<br />

<br />

∂ 2 P 1<br />

+<br />

∂z∂x + ∂2 Q 1<br />

∂z∂y − ∂2 R 1<br />

∂x − ∂2 R 2<br />

k<br />

2 ∂y 2<br />

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and<br />

comparing, we have curl curl F =graddivF −∇ 2 F as desired.<br />

31. (a) ∇r = ∇ x 2 + y 2 + z 2 =<br />

(b) ∇ × r =<br />

∂<br />

∂x<br />

<br />

1<br />

(c) ∇ = ∇<br />

r<br />

i j k<br />

∂<br />

∂y<br />

∂<br />

∂z<br />

x y z<br />

<br />

<br />

<br />

1<br />

<br />

x2 + y 2 + z 2<br />

x<br />

<br />

x2 + y 2 + z 2 i +<br />

1<br />

−<br />

2 x<br />

=<br />

2 + y 2 + z (2x)<br />

2 i −<br />

x 2 + y 2 + z 2<br />

= − x i + y j + z k<br />

(x 2 + y 2 + z 2 ) 3/2 = − r<br />

r 3<br />

y<br />

<br />

x2 + y 2 + z 2 j +<br />

z<br />

<br />

x2 + y 2 + z k = x i + y j + z k<br />

2 x2 + y 2 + z = r 2 r<br />

∂<br />

=<br />

∂y (z) − ∂ ∂<br />

∂z (y) i +<br />

∂z (x) − ∂ ∂<br />

∂x (z) j +<br />

∂x (y) − ∂ <br />

∂y (x) k = 0<br />

1<br />

2 x 2 + y 2 + z 2 (2y)<br />

x 2 + y 2 + z 2<br />

(d) ∇ ln r = ∇ ln(x 2 + y 2 + z 2 ) 1/2 = 1 2 ∇ ln(x2 + y 2 + z 2 )<br />

=<br />

x<br />

x 2 + y 2 + z 2 i +<br />

y<br />

x 2 + y 2 + z 2 j +<br />

j −<br />

1<br />

2 x 2 + y 2 + z 2 (2z)<br />

x 2 + y 2 + z 2<br />

z<br />

x 2 + y 2 + z k = x i + y j + z k<br />

2 x 2 + y 2 + z = r<br />

2 r 2<br />

33. By (13), C f(∇g) · n ds = D div(f∇g) dA = D [f div(∇g)+∇g · ∇f] dA by Exercise 25. But div(∇g) =∇2 g.<br />

Hence D f∇2 gdA= f(∇g) · n ds − ∇g · ∇f dA.<br />

C D<br />

k<br />

35. Let f(x, y) =1.Then∇f = 0 and Green’s first identity (see Exercise 33) says<br />

<br />

D ∇2 gdA= (∇g) · n ds − 0 · ∇gdA ⇒ C D D ∇2 gdA= ∇g · n ds. Butg is harmonic on D,so<br />

C<br />

∇ 2 g =0 ⇒ ∇g · n ds =0and D C C ngds= (∇g · n) ds =0.<br />

C<br />

37. (a) We know that ω = v/d, and from the diagram sin θ = d/r ⇒ v = dω =(sinθ)rω = |w × r|. Butv is perpendicular<br />

to both w and r,sothatv = w × r.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!