30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 17.4 GREEN’S THEOREM ET SECTION 16.4 ¤ 281<br />

(c) A = 1 2<br />

[(0 · 1 − 2 · 0) + (2 · 3 − 1 · 1) + (1 · 2 − 0 · 3) + (0 · 1 − (−1) · 2) + (−1 · 0 − 0 · 1)]<br />

= 1 2 (0+5+2+2)= 9 2<br />

23. We orient the quarter-circular region as shown in the figure.<br />

A = 1 4 πa2 so x = 1 <br />

x 2 dy and y = − 1 <br />

πa 2 /2<br />

πa 2 /2<br />

C<br />

C<br />

y 2 dx.<br />

Here C = C 1 + C 2 + C 3 where C 1 : x = t, y =0, 0 ≤ t ≤ a;<br />

C 2 : x = a cos t, y = a sin t, 0 ≤ t ≤ π 2 ;and<br />

C 3 : x =0, y = a − t, 0 ≤ t ≤ a. Then<br />

<br />

C x2 dy = C 1<br />

x 2 dy + C 2<br />

x 2 dy + C 3<br />

x 2 dy = a<br />

0 0 dt + π/2<br />

0<br />

(a cos t) 2 (a cos t) dt + a<br />

0 0 dt<br />

so x = 1<br />

πa 2 /2<br />

= π/2<br />

a 3 cos 3 tdt= a 3 π/2<br />

(1 − sin 2 t)costdt= a 3 sin t − 1 0 0 3 sin3 t π/2<br />

= 2 0 3 a3<br />

<br />

x 2 dy = 4a<br />

C 3π .<br />

<br />

C y2 dx = C 1<br />

y 2 dx + C 2<br />

y 2 dx + C 3<br />

y 2 dx = a<br />

0 0 dt + π/2<br />

0<br />

(a sin t) 2 (−a sin t) dt + a<br />

0 0 dt<br />

so y = − 1<br />

πa 2 /2<br />

= π/2<br />

(−a 3 sin 3 t) dt = −a 3 π/2<br />

(1 − cos 2 t)sintdt= −a 3 1<br />

0 0 3 cos3 t − cos t π/2<br />

= − 2 0 3 a3 ,<br />

<br />

y 2 dx = 4a<br />

4a<br />

C 3π . Thus (x, y) = 3π , 4a<br />

3π<br />

25. By Green’s Theorem, − 1 3 ρ C y3 dx = − 1 3 ρ D (−3y2 ) dA = D y2 ρdA = I x and<br />

1<br />

ρ 3 C x3 dy = 1 ρ 3 D (3x2 ) dA = D x2 ρdA= I y .<br />

27. Since C is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t<br />

<br />

.<br />

contain the origin but does contain D. ThusP = −y/(x 2 + y 2 ) and Q = x/(x 2 + y 2 ) have continuous partial derivatives on<br />

this open region containing D and we can apply Green’s Theorem. But by Exercise 17.3.33(a) [ ET 16.3.33(a)],<br />

∂P/∂y = ∂Q/∂x,so F · dr = 0 dA =0.<br />

C D<br />

29. Using the firstpartof(5),wehavethat dx dy = A(R) = ∂h ∂h<br />

xdy.Butx = g(u, v),anddy = du +<br />

R ∂R<br />

∂u ∂v dv,<br />

and we orient ∂S by taking the positive direction to be that which corresponds, under the mapping, to the positive direction<br />

along ∂R,so<br />

<br />

∂R<br />

∂h<br />

xdy= g(u, v)<br />

∂S ∂u<br />

= ± S<br />

= ± S<br />

= ± S<br />

∂<br />

∂u<br />

<br />

∂h<br />

du +<br />

∂v dv = g(u, v) ∂h<br />

∂S ∂u<br />

g(u, v)<br />

∂h<br />

g(u, v)<br />

∂h<br />

∂v<br />

−<br />

∂<br />

∂v<br />

<br />

∂g ∂h<br />

+ g(u, v) ∂2 h<br />

− ∂g ∂h<br />

− g(u, v) ∂2 h<br />

∂u ∂v ∂u ∂v ∂v ∂u ∂v ∂u<br />

∂x ∂y<br />

− ∂x ∂y<br />

∂u ∂v ∂v ∂u<br />

du + g(u, v)<br />

∂h<br />

∂v dv<br />

∂u dA [using Green’s Theorem in the uv-plane]<br />

<br />

dA [using the Chain Rule]<br />

dA [by the equality of mixed partials] = ±<br />

<br />

S<br />

∂(x,y)<br />

du dv<br />

∂(u,v)<br />

The sign is chosen to be positive if the orientation that we gave to ∂S corresponds to the usual positive orientation, and it is<br />

negative otherwise. In either case, since A(R) is positive, the sign chosen must be the same as the sign of<br />

<br />

Therefore A(R) = dx dy =<br />

R<br />

S<br />

∂(x, y)<br />

∂(u, v) du dv.<br />

∂ (x, y)<br />

∂(u, v) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!