30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

280 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16<br />

TX.10<br />

15. Here C = C 1 + C 2 where<br />

C 1 can be parametrized as x = t, y =1, −1 ≤ t ≤ 1,and<br />

C 2 is given by x = −t, y =2− t 2 , −1 ≤ t ≤ 1.<br />

Thenthelineintegralis<br />

<br />

C 1 +C 2<br />

y 2 e x dx + x 2 e y dy = 1<br />

−1 [1 · et + t 2 e · 0] dt<br />

+ 1<br />

−1 [(2 − t2 ) 2 e −t (−1) + (−t) 2 e 2−t2 (−2t)] dt<br />

= 1<br />

−1 [et − (2 − t 2 ) 2 e −t − 2t 3 e 2−t2 ] dt = −8e +48e −1<br />

according to a CAS. The double integral is<br />

∂Q<br />

∂x − ∂P 1<br />

2−x<br />

2<br />

dA = (2xe y − 2ye x ) dy dx = −8e +48e −1 , verifying Green’s Theorem in this case.<br />

∂y<br />

D<br />

−1<br />

1<br />

17. By Green’s Theorem, W = C F · dr = C x(x + y) dx + xy2 dy = D (y2 − x) dy dx where C is the path described in the<br />

question and D is the triangle bounded by C. So<br />

W = 1 1−x<br />

(y 2 − x) dy dx = 1<br />

1<br />

0 0 0 3 y3 − xy y =1−x<br />

dx = 1<br />

1 (1 − y =0 0 3 x)3 − x(1 − x) dx<br />

= − 1 (1 − 12 x)4 − 1 2 x2 + 1 x3 1<br />

= <br />

3<br />

− 1 + 1<br />

0 2 3 − −<br />

1<br />

12 = −<br />

1<br />

12<br />

19. Let C 1 be the arch of the cycloid from (0, 0) to (2π, 0), which corresponds to 0 ≤ t ≤ 2π,andletC 2 be the segment from<br />

(2π, 0) to (0, 0),soC 2 is given by x =2π − t, y =0, 0 ≤ t ≤ 2π. ThenC = C 1 ∪ C 2 is traversed clockwise, so −C is<br />

oriented positively. Thus −C encloses the area under one arch of the cycloid and from (5) we have<br />

A = − −C ydx= C 1<br />

ydx+ C 2<br />

ydx= 2π<br />

0 (1 − cos t)(1 − cos t) dt + 2π<br />

0<br />

0(−dt)<br />

= 2π<br />

(1 − 2cost 0 +cos2 t) dt +0= t − 2sint + 1 t + 1 sin 2t 2π<br />

=3π<br />

2 4 0<br />

21. (a) Using Equation 17.2.8 [ ET 16.2.8], we write parametric equations of the line segment as x =(1− t)x 1 + tx 2 ,<br />

y =(1− t)y 1 + ty 2 , 0 ≤ t ≤ 1. Thendx =(x 2 − x 1 ) dt and dy =(y 2 − y 1 ) dt,so<br />

C xdy− ydx= 1<br />

0 [(1 − t)x 1 + tx 2 ](y 2 − y 1 ) dt +[(1− t)y 1 + ty 2 ](x 2 − x 1 ) dt<br />

= 1<br />

(x1(y2 − y1) − y1(x2 − x1)+t[(y2 − y1)(x2 − x1) − (x2 − x1)(y2 − y1)]) dt<br />

0<br />

= 1<br />

(x 0 1y 2 − x 2 y 1 ) dt = x 1 y 2 − x 2 y 1<br />

(b) We apply Green’s Theorem to the path C = C 1 ∪ C 2 ∪ ···∪ C n ,whereC i is the line segment that joins (x i ,y i ) to<br />

(x i+1 ,y i+1 ) for i =1, 2, ..., n − 1, andC n is the line segment that joins (x n ,y n ) to (x 1 ,y 1 ).From(5),<br />

<br />

1<br />

xdy− ydx= dA,whereD is the polygon bounded by C. Therefore<br />

2 C D<br />

area of polygon = A(D) = dA = <br />

1 xdy− ydx<br />

D 2 C<br />

<br />

= 1 2 C 1<br />

xdy− ydx+ C 2<br />

xdy− ydx+ ···+ C n−1<br />

xdy− ydx+ <br />

C n<br />

xdy− ydx<br />

To evaluate these integrals we use the formula from (a) to get<br />

A(D) = 1 2 [(x 1y 2 − x 2 y 1 )+(x 2 y 3 − x 3 y 2 )+···+(x n−1 y n − x n y n−1 )+(x n y 1 − x 1 y n )].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!