30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

CHAPTER 16 REVIEW ET CHAPTER 15 ¤ 263<br />

43. (a) f(x, y) is a joint density function, so we know that R 2 f(x, y) dA =1.Sincef(x, y) =0outside the rectangle<br />

[0, 3] × [0, 2], we can say<br />

R 2 f(x, y) dA = ∞<br />

−∞<br />

Then 15C =1 ⇒ C = 1 15 .<br />

(b) P (X ≤ 2,Y ≥ 1) = 2<br />

−∞<br />

<br />

= 1 2<br />

15 0<br />

= C 3<br />

0<br />

∞ f(x, y) dy dx = 3 2<br />

C(x + y) dy dx<br />

−∞ 0 0<br />

<br />

xy +<br />

1<br />

2 y2 y=2<br />

y=0 dx = C 3<br />

0 (2x +2)dx = C x 2 +2x 3<br />

0 =15C<br />

∞<br />

f(x, y) dy dx = 2 2<br />

1 0 1<br />

x +<br />

3<br />

2 dx =<br />

1 1<br />

15 2 x2 + 3 x 2<br />

= 1<br />

2 0 3<br />

1<br />

(x, y) dy dx = 1 2<br />

<br />

15 15 0 xy +<br />

1<br />

y2 y=2<br />

dx<br />

2 y=1<br />

(c) P (X + Y ≤ 1) = P ((X, Y ) ∈ D) where D is the triangular region shown in<br />

the figure. Thus<br />

1−x<br />

P (X + Y ≤ 1) = f(x, y) dA = 1<br />

D 0 0<br />

<br />

= 1 1<br />

<br />

15 0 xy +<br />

1<br />

y2 y=1−x<br />

2<br />

<br />

= 1 1<br />

15 0<br />

= 1<br />

30<br />

y=0<br />

dx<br />

1<br />

(x + y) dy dx<br />

15<br />

<br />

x(1 − x)+<br />

1<br />

(1 − x)2 dx<br />

2<br />

1 (1 − <br />

0 x2 ) dx = 1<br />

30 x −<br />

1<br />

x3 1<br />

= 1<br />

3 0 45<br />

45.<br />

1<br />

1<br />

1−y<br />

f(x, y, z) dz dy dx = 1<br />

−1 x 2 0 0<br />

1−z<br />

0<br />

√ y<br />

− √ f(x, y, z) dx dy dz<br />

y<br />

47. Since u = x − y and v = x + y, x = 1 (u + v) and y = 1 2 2<br />

(v − u).<br />

∂(x, y) <br />

Thus<br />

∂(u, v) = 1/2 1/2<br />

−1/2 1/2 = 1 <br />

2<br />

R<br />

and x − y<br />

4<br />

0<br />

<br />

x + y dA = u 1 4<br />

dv<br />

du dv = − = − ln 2.<br />

2 −2 v 2<br />

2 v<br />

49. Let u = y − x and v = y + x so x = y − u =(v − x) − u ⇒ x = 1 (v − u) and y = v − 1 (v − u) = 1 2 2 2<br />

(v + u).<br />

∂(x, y)<br />

∂(u, v) = ∂x ∂y<br />

∂u ∂v − ∂x<br />

∂y<br />

∂v ∂u = <br />

− 1 1<br />

<br />

2 2 −<br />

1 1<br />

= − 1 = 1 . R is the image under this transformation of the square<br />

2 2 2 2<br />

with vertices (u, v) =(0, 0), (−2, 0), (0, 2),and(−2, 2). So<br />

<br />

R<br />

xy dA =<br />

2<br />

0<br />

0<br />

−2<br />

v 2 − u 2<br />

4<br />

1 <br />

du dv = 1 2<br />

<br />

2<br />

8 0 v 2 u − 1 u3 u=0<br />

dv = 1 2<br />

3 u=−2 8 0<br />

<br />

2v 2 − 8 3 dv =<br />

1 2<br />

8 3 v3 − 8 v 2<br />

=0<br />

3 0<br />

This result could have been anticipated by symmetry, since the integrand is an odd function of y and R is symmetric about<br />

the x-axis.<br />

51. For each r such that D r lies within the domain, A(D r )=πr 2 , and by the Mean Value Theorem for Double Integrals there<br />

exists (x r ,y r ) in D r such that f (x r ,y r )= 1 <br />

f(x, y) dA. But lim<br />

πr (x r,y 2 r )=(a, b),<br />

D r<br />

r→0 +<br />

<br />

1<br />

so lim<br />

f (x, y) dA = lim<br />

r→0 + πr f(x r,y 2 r )=f(a, b) by the continuity of f.<br />

D r<br />

r→0 +

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!