30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

262 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

33. Using the wedge above the plane z =0and below the plane z = mx and noting that we have the same volume for m0 (so use m>0), we have<br />

V =2 a/3 √ a 2 −9y 2<br />

mx dx dy =2 a/3 1<br />

0 0 0 2 m(a2 − 9y 2 ) dy = m a 2 y − 3y 3 a/3<br />

= m 1<br />

0<br />

3 a3 − 1 a3 = 2 9 9 ma3 .<br />

35. (a) m = 1<br />

1−y<br />

2<br />

ydxdy= 1<br />

(y − 0 0 0 y3 ) dy = 1 − 1 = 1 2 4 4<br />

(b) M y = 1 1 − y<br />

2<br />

xy dx dy = 1 1<br />

y(1 − 0 0 0 2 y2 ) 2 dy = − 1 (1 − 12 y2 ) 3 1<br />

= 1 , 0 12<br />

M x = 1 1 − y<br />

2<br />

y 2 dx dy = 1<br />

0 0 0 (y2 − y 4 ) dy = 2 .Hence(x, y) = 1<br />

, 8<br />

15 3 15 .<br />

(c) I x = 1 1−y<br />

2<br />

y 3 dx dy = 1<br />

0 0 0 (y3 − y 5 ) dy = 1 , 12<br />

I y = 1 1−y<br />

2<br />

yx 2 dx dy = 1 1<br />

y(1 − 0 0 0 3 y2 ) 3 dy = − 1 (1 − 24 y2 ) 4 1<br />

= 1 , 0 24<br />

I 0 = I x + I y = 1 8 , y 2 = 1/12<br />

1/4 = 1 3<br />

⇒ y = 1 √<br />

3<br />

,andx 2 = 1/24<br />

1/4 = 1 6<br />

⇒ x = 1 √<br />

6<br />

.<br />

37. The equation of the cone with the suggested orientation is (h − z) = h a<br />

<br />

x2 + y 2 , 0 ≤ z ≤ h. ThenV = 1 3 πa2 h is the<br />

volume of one frustum of a cone; by symmetry M yz = M xz =0;and<br />

<br />

√<br />

h−(h/a) x 2 +y 2 2π<br />

a<br />

M xy =<br />

zdzdA=<br />

0<br />

0 0 0<br />

x 2 +y 2 ≤a 2<br />

= πh2<br />

a 2<br />

a<br />

Hence the centroid is (x, y, z) = 0, 0, 1 4 h .<br />

0<br />

(h/a)(a−r)<br />

rz dz dr dθ = π<br />

<br />

(a 2 r − 2ar 2 + r 3 ) dr = πh2 a<br />

4<br />

a 2 2 − 2a4<br />

3 + a4<br />

= πh2 a 2<br />

4 12<br />

a<br />

0<br />

r h2<br />

a 2 (a − r)2 dr<br />

39. 3<br />

√ 9−x 2<br />

(x<br />

0 −<br />

√9−x 3 + xy 2 ) dy dx =<br />

2<br />

41. From the graph, it appears that 1 − x 2 = e x at x ≈−0.71 and at<br />

x =0,with1 − x 2 >e x on (−0.71, 0). So the desired integral is<br />

D y2 dA ≈ 0<br />

1−x<br />

2<br />

y 2 dy dx<br />

−0.71 e x<br />

0 [(1 − −0.71 x2 ) 3 − e 3x ] dx<br />

= 1 3<br />

= 1 3<br />

<br />

x − x 3 + 3 5 x5 − 1 7 x7 − 1 3 e3x 0<br />

−0.71 ≈ 0.0512<br />

3<br />

0<br />

√ 9−x 2<br />

x(x<br />

−<br />

√9−x 2 + y 2 ) dy dx<br />

2<br />

= π/2<br />

−π/2<br />

3<br />

0 (r cos θ)(r2 ) rdrdθ<br />

= π/2<br />

−π/2 cos θdθ 3<br />

0 r4 dr<br />

= sin θ π/2 1 r5 3<br />

−π/2 5<br />

0 =2· 1<br />

5<br />

(243) =<br />

486<br />

5<br />

=97.2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!