30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

260 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

1. Asshowninthecontourmap,wedivideR into 9 equally sized subsquares, each with area ∆A =1. Then we approximate<br />

<br />

f(x, y) dA by a Riemann sum with m = n =3and the sample points the upper right corners of each square, so<br />

3.<br />

5.<br />

R<br />

R f(x, y) dA ≈ 3 <br />

i =1j =1<br />

3<br />

f(x i,y j) ∆A<br />

= ∆A [f(1, 1) + f(1, 2) + f(1, 3) + f(2, 1) + f(2, 2) + f(2, 3) + f(3, 1) + f(3, 2) + f(3, 3)]<br />

Using the contour lines to estimate the function values, we have<br />

<br />

f(x, y) dA ≈ 1[2.7+4.7+8.0+4.7+6.7+10.0+6.7+8.6+11.9] ≈ 64.0<br />

2<br />

1<br />

1<br />

0<br />

R<br />

2 (y 0 +2xey ) dx dy = 2<br />

<br />

1 xy + x 2 e y x=2<br />

dy = 2<br />

(2y x=0 1 +4ey ) dy = y 2 +4e y 2<br />

1<br />

=4+4e 2 − 1 − 4e =4e 2 − 4e +3<br />

x<br />

0 cos(x2 ) dy dx = 1<br />

<br />

0 cos(x 2 )y y=x<br />

dx = 1<br />

x y=0 0 cos(x2 ) dx = 1 2 sin(x2 ) 1<br />

= 1 sin 1<br />

0 2<br />

7.<br />

π<br />

0<br />

1<br />

0<br />

√ 1−y 2<br />

0<br />

y sin xdzdydx = π<br />

0<br />

= π<br />

0<br />

1<br />

z=<br />

√1−y<br />

0 (y sin x)z 2<br />

dy dx = π<br />

1 y 1 − y<br />

z=0<br />

0 0 2 sin xdydx<br />

<br />

y=1<br />

− 1 (1 − 3 y2 ) 3/2 sin x dx = π 1<br />

sin xdx= − 1 cos x π<br />

= 2<br />

0 3 3 0 3<br />

y=0<br />

9. The region R is more easily described by polar coordinates: R = {(r, θ) | 2 ≤ r ≤ 4, 0 ≤ θ ≤ π}. Thus<br />

R f(x, y) dA = π 4<br />

f(r cos θ, r sin θ) rdrdθ.<br />

0 2<br />

11. The region whose area is given by π/2<br />

sin 2θ<br />

rdrdθis<br />

0 0<br />

<br />

(r, θ) | 0 ≤ θ ≤<br />

π<br />

, 0 ≤ r ≤ sin 2θ , which is the region contained in the<br />

2<br />

loop in the first quadrant of the four-leaved rose r =sin2θ.<br />

13.<br />

1<br />

0<br />

1<br />

x cos(y2 ) dy dx = 1<br />

y<br />

0 0 cos(y2 ) dx dy<br />

= 1<br />

0 cos(y2 ) x x=y<br />

x=0 dy = 1<br />

0 y cos(y2 ) dy<br />

= 1<br />

2 sin(y2 ) 1<br />

0 = 1 2 sin 1<br />

15.<br />

R yexy dA = 3<br />

0<br />

2<br />

0 yexy dx dy = 3<br />

<br />

0 e<br />

xy x=2<br />

dy = 3<br />

x=0 0 (e2y − 1) dy = 1<br />

2 e2y − y 3<br />

= 1 0 2 e6 − 3 − 1 = 1 2 2 e6 − 7 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!