30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

15.<br />

SECTION 16.9TX.10<br />

CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ET SECTION 15.9 ¤ 257<br />

∂(x, y) <br />

∂(u, v) = 1/v −u/v 2<br />

0 1 = 1 v , xy = u, y = x is the image of the parabola v2 = u, y =3x is the image of the parabola<br />

v 2 =3u, and the hyperbolas xy =1, xy =3are the images of the lines u =1and u =3respectively. Thus<br />

<br />

R<br />

xy dA =<br />

3<br />

√ 3u<br />

1<br />

√ u<br />

u 1<br />

v<br />

<br />

dv du =<br />

3<br />

1<br />

<br />

u ln √ 3u − ln √ <br />

u du = 3<br />

u ln √ 3 du =4ln √ 3=2ln3.<br />

1<br />

17. (a)<br />

a 0 0<br />

∂(x, y, z)<br />

∂(u, v, w) = 0 b 0<br />

= abc and since u = x a , v = y b , w = z the solid enclosed by the ellipsoid is the image of the<br />

c<br />

0 0 c<br />

<br />

ball u 2 + v 2 + w 2 ≤ 1. So<br />

E dV = <br />

u 2 +v 2 +w 2 ≤ 1<br />

(b) If we approximate the surface of the earth by the ellipsoid<br />

abc du dv dw =(abc)(volume of the ball) = 4 3 πabc<br />

x 2<br />

6378 + y2<br />

2 6378 + z2<br />

=1, then we can estimate<br />

2 63562 the volume of the earth by finding the volume of the solid E enclosed by the ellipsoid. From part (a), this is<br />

<br />

E dV = 4 3 π(6378)(6378)(6356) ≈ 1.083 × 1012 km 3 .<br />

<br />

19. Letting u = x − 2y and v =3x − y,wehavex = 1 (2v − u) and y = 1 y)<br />

(v − 3u). Then∂(x,<br />

5 5<br />

∂(u, v) = −1/5 2/5<br />

−3/5 1/5 = 1 5<br />

and R is the image of the rectangle enclosed by the lines u =0, u =4, v =1,andv =8. Thus<br />

<br />

R<br />

<br />

x − 2y<br />

4<br />

3x − y dA =<br />

0<br />

8<br />

1<br />

u<br />

v<br />

1 5 dv du = 1 5<br />

4<br />

0<br />

udu<br />

8<br />

1<br />

1<br />

v dv = 1 1 u2 4<br />

5 2 0<br />

8<br />

ln |v| = 8 ln 8.<br />

1 5<br />

21. Letting u = y − x, v = y + x,wehavey = 1 (u + v), x = 1 y) <br />

(v − u). Then∂(x,<br />

2 2<br />

∂(u, v) = −1/2 1/2<br />

1/2 1/2 = −1 and R is the<br />

2<br />

image of the trapezoidal region with vertices (−1, 1), (−2, 2), (2, 2),and(1, 1). Thus<br />

<br />

cos y − x 2<br />

v<br />

y + x dA = cos u v − 1 2 du dv = 1 2 <br />

v sin u u = v<br />

dv = 1 2 v u = −v 2<br />

R<br />

1<br />

−v<br />

1<br />

2<br />

1<br />

2v sin(1) dv = 3 2 sin 1<br />

23. Let u = x + y and v = −x + y. Thenu + v =2y ⇒ y = 1 (u + v) and u − v =2x ⇒ x = 1 (u − v).<br />

2 2<br />

∂(x, y) <br />

∂(u, v) = 1/2 −1/2<br />

1/2 1/2 = 1 .Now|u| = |x + y| ≤ |x| + |y| ≤ 1 ⇒ −1 ≤ u ≤ 1,and<br />

2<br />

|v| = |−x + y| ≤ |x| + |y| ≤ 1 ⇒ −1 ≤ v ≤ 1. R is the image of the square<br />

region with vertices (1, 1), (1, −1), (−1, −1),and(−1, 1).<br />

So <br />

R ex+y dA = 1 1<br />

1<br />

<br />

2 −1 −1 eu du dv = 1 2 e<br />

u 1 1<br />

−1 v = e − −1 e−1 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!