30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

254 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

35. In spherical coordinates z = x 2 + y 2 becomes cos φ =sinφ or φ = π 4 .Then<br />

V = 2π<br />

0<br />

M xy = 2π<br />

0<br />

π/4<br />

1<br />

0 0 ρ2 sin φdρdφdθ = 2π<br />

dθ π/4<br />

sin φdφ 1<br />

0 0<br />

π/4<br />

0<br />

Hence (x, y, z) =<br />

1<br />

0 ρ3 sin φ cos φdρdφdθ =2π − 1 cos 2φ π/4<br />

4 0<br />

<br />

0, 0,<br />

<br />

3<br />

8 2 − √ 2 .<br />

0 ρ2 dρ = 1 π 2 − √ 2 ,<br />

3<br />

1<br />

<br />

4 =<br />

π<br />

and by symmetry Myz = Mxz =0.<br />

8<br />

37. In cylindrical coordinates the paraboloid is given by z = r 2 and the plane by z =2r sin θ and they intersect in the circle<br />

r =2sinθ. Then zdV = π 2sinθ<br />

2r sin θ<br />

rz dz dr dθ = 5π E 0 0 r 2 6<br />

[using a CAS].<br />

39. The region E of integration is the region above the cone z = x 2 + y 2 and below the sphere x 2 + y 2 + z 2 =2in the first<br />

octant. Because E is in the first octant we have 0 ≤ θ ≤ π 2 . The cone has equation φ = π 4 (as in Example 4), so 0 ≤ φ ≤ π 4 ,<br />

and 0 ≤ ρ ≤ √ 2. So the integral becomes<br />

π/4<br />

0<br />

π/2<br />

0<br />

√ 2<br />

0<br />

(ρ sin φ cos θ)(ρ sin φ sin θ) ρ 2 sin φdρdθdφ<br />

= π/4<br />

sin 3 φdφ π/2<br />

sin θ cos θdθ √ 2<br />

ρ 4 dρ =<br />

0 0 0<br />

= 1<br />

3 cos3 φ − cos φ π/4<br />

· 1 · 1<br />

0 2 5<br />

√<br />

2<br />

5<br />

=<br />

√2<br />

41. In cylindrical coordinates, the equation of the cylinder is r =3, 0 ≤ z ≤ 10.<br />

The hemisphere is the upper part of the sphere radius 3, center (0, 0, 10), equation<br />

π/4<br />

<br />

1 − cos 2 φ <br />

sin φdφ<br />

1<br />

2 sin2 θ π/2<br />

0<br />

−<br />

√<br />

2<br />

− 1<br />

− 1 · 2√ 2<br />

= 4√ 2−5<br />

12 2 3 5 15<br />

r 2 +(z − 10) 2 =3 2 , z ≥ 10.InMaple,wecanusethecoords=cylindrical option<br />

in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.<br />

0<br />

1<br />

5 ρ5√ 2<br />

0<br />

43. If E is the solid enclosed by the surface ρ =1+ 1 sin 6θ sin 5φ, it can be described in spherical coordinates as<br />

5<br />

E = (ρ, θ, φ) | 0 ≤ ρ ≤ 1+ 1 5 sin 6θ sin 5φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π . Its volume is given by<br />

V (E) = E dV = π<br />

0<br />

2π<br />

1+(sin6θ sin 5φ)/5<br />

ρ 2 sin φdρdθdφ= 136π [using a CAS].<br />

0 0 99<br />

45. (a) From the diagram, z = r cot φ 0 to z = √ a 2 − r 2 , r =0<br />

to r = a sin φ 0 (or use a 2 − r 2 = r 2 cot 2 φ 0 ). Thus<br />

V = 2π<br />

0<br />

a sin φ0<br />

0<br />

√ a 2 −r 2<br />

r cot φ 0<br />

rdzdrdθ<br />

=2π a sin φ 0<br />

√ <br />

0 r a2 − r 2 − r 2 cot φ 0 dr<br />

<br />

a sin φ0<br />

−(a 2 − r 2 ) 3/2 − r 3 cot φ 0<br />

= 2π 3<br />

= 2π 3<br />

− a 2 − a 2 sin 2 φ 0<br />

3/2<br />

− a 3 sin 3 φ 0 cot φ 0 + a 3 <br />

= 2 3 πa3 1 − cos 3 φ 0 +sin 2 φ 0 cos φ 0<br />

=<br />

2<br />

3 πa3 (1 − cos φ 0 )<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!