30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

25.<br />

E x2 dV = π<br />

π<br />

0 0<br />

SECTION 16.8TX.10<br />

TRIPLE INTEGRALS IN SPHERICAL COORDINATES ET SECTION 15.8 ¤ 253<br />

4<br />

3 (ρ sin φ cos θ)2 ρ 2 sin φdρdφdθ = π<br />

0 cos2 θdθ π<br />

0 sin3 φdφ 4<br />

= 1<br />

2 θ + 1 4 sin 2θ π<br />

0<br />

−<br />

1<br />

(2 + 3 sin2 φ)cosφ π 1 ρ5 4<br />

= <br />

π 2 + 2<br />

0 5 3 2 3 3<br />

3 ρ4 dρ<br />

1<br />

5 (45 − 3 5 )= 1562<br />

15 π<br />

27. The solid region is given by E = (ρ, θ, φ) | 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, π 6 ≤ φ ≤ π 3<br />

<br />

and its volume is<br />

V = E dV = π/3<br />

π/6<br />

=[− cos φ] π/3 <br />

1<br />

π/6 [θ]2π 0<br />

ρ3 a<br />

= 3 0<br />

2π<br />

a<br />

0 0 ρ2 sin φdρdθdφ= π/3<br />

sin φdφ 2π<br />

dθ a<br />

π/6 0<br />

− 1 2 + √ 3<br />

2<br />

<br />

(2π) 1<br />

3 a3 = √ 3−1<br />

3<br />

πa 3<br />

0 ρ2 dρ<br />

29. (a) Since ρ =4cosφ implies ρ 2 =4ρ cos φ, the equation is that of a sphere of radius 2 with center at (0, 0, 2). Thus<br />

V = 2π<br />

0<br />

π/3<br />

4cosφ<br />

ρ 2 sin φdρdφdθ = 2π<br />

0 0 0<br />

π/3<br />

1 ρ3 ρ=4 cos φ<br />

0 3 ρ=0<br />

= 2π<br />

<br />

0 −<br />

16<br />

3 cos4 φ φ=π/3<br />

dθ = 2π<br />

<br />

− 16 1<br />

− 1 dθ =5θ<br />

φ=0<br />

0 3 16<br />

(b) By the symmetry of the problem M yz = M xz =0.Then<br />

M xy = 2π<br />

0<br />

Hence (x, y, z) =(0, 0, 2.1).<br />

2π<br />

0<br />

sin φdφdθ = 2π<br />

0<br />

=10π<br />

π/3<br />

64<br />

0 3<br />

π/3<br />

4cosφ<br />

ρ 3 cos φ sin φdρdφdθ = 2π π/3<br />

cos φ sin φ 64 cos 4 φ dφ dθ<br />

0 0 0 0<br />

= 2π<br />

64 − 1 0 6 cos6 φ φ=π/3<br />

dθ = 2π 21<br />

dθ =21π<br />

φ=0<br />

0 2<br />

31. By the symmetry of the region, M xy =0and M yz =0. Assuming constant density K,<br />

and<br />

m = KV = K π<br />

π<br />

E 0 0<br />

= Kπ − cos φ π 1 ρ3 4<br />

=2Kπ · 37 = 74<br />

0 3 3 3<br />

M xz = yKdV = K π<br />

π<br />

E 0 0<br />

= K − cos θ π<br />

0<br />

<br />

Myz<br />

Thus the centroid is (x, y, z) =<br />

m , M xz<br />

m , M xy<br />

m<br />

4<br />

3<br />

ρ2 sin φdρdφdθ = K π<br />

0 dθ π<br />

0 sin φdφ 4<br />

3 ρ2 dρ<br />

cos3 φ sin φdφdθ<br />

πK 3<br />

4 (ρ sin φ sin θ) 3 ρ2 sin φdρdφdθ = K π<br />

sin θdθ π<br />

0 0 sin2 φdφ 4<br />

1 φ − 1 sin 2φ π 1 ρ4 4<br />

= K(2) <br />

π 1 175<br />

(256 − 81) = πK<br />

2 4 0 4 3 2 4 4<br />

<br />

= 0, 175πK/4 <br />

74πK/3 , 0 = 0, 525 , 0 .<br />

296<br />

3 ρ3 dρ<br />

33. (a) The density function is ρ(x, y, z) =K, a constant, and by the symmetry of the problem M xz = M yz =0.Then<br />

M xy = 2π<br />

0<br />

π/2<br />

a<br />

0 0 Kρ3 sin φ cos φdρdφdθ = 1 2 πKa4 π/2<br />

sin φ cos φdφ= 1 0 8 πKa4 .ButthemassisK(volume of<br />

the hemisphere) = 2 3 πKa3 , so the centroid is 0, 0, 3 8 a .<br />

(b) Place the center of the base at (0, 0, 0); the density function is ρ(x, y, z) =K. By symmetry, the moments of inertia about<br />

any two such diameters will be equal, so we just need to find I x:<br />

I x = 2π<br />

0<br />

= K 2π<br />

0<br />

π/2<br />

a<br />

0 0 (Kρ2 sin φ) ρ 2 (sin 2 φ sin 2 θ +cos 2 φ) dρ dφ dθ<br />

π/2<br />

0<br />

(sin 3 φ sin 2 θ +sinφ cos 2 φ) 1<br />

a5 dφ dθ<br />

5<br />

= 1 5 Ka5 2π<br />

<br />

0 sin 2 θ − cos φ + 1 3 cos3 φ + − 1 3 cos3 φ φ=π/2<br />

dθ = 1 φ=0 5 Ka5 2π<br />

0<br />

= 1<br />

5 Ka5 2 1 θ − 1 sin 2θ + 1 θ 2π<br />

= 1 3 2 4 3 0 5 Ka5 2<br />

(π − 0) + 1 (2π − 0) = 4<br />

3 3 15 Ka5 π<br />

2<br />

<br />

3 sin2 θ + 1 3 dθ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!