30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

250 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

25. The paraboloid z =4x 2 +4y 2 intersects the plane z = a when a =4x 2 +4y 2 or x 2 + y 2 = 1 4<br />

a. So, in cylindrical<br />

coordinates, E = (r, θ, z) | 0 ≤ r ≤ 1 2<br />

√ a, 0 ≤ θ ≤ 2π, 4r 2 ≤ z ≤ a .Thus<br />

m =<br />

2π<br />

√ a/2 a<br />

= K<br />

0 0<br />

2π<br />

0<br />

4r 2 Kr dz dr dθ = K<br />

1<br />

2 ar2 − r 4 r= √ a/2<br />

r=0<br />

Since the region is homogeneous and symmetric, M yz = M xz =0and<br />

M xy =<br />

Hence (x, y, z) = 0, 0, 2 3 a .<br />

2π<br />

√ a/2 a<br />

= K<br />

0 0<br />

2π<br />

0<br />

4r 2 Krzdzdrdθ= K<br />

1<br />

4 a2 r 2 − 4 r6 r= √ a/2<br />

dθ = K<br />

3<br />

r=0<br />

2π<br />

√ a/2<br />

0<br />

0<br />

(ar − 4r 3 ) dr dθ<br />

2π<br />

1<br />

dθ = K<br />

16 a2 dθ = 1 8 a2 πK<br />

0<br />

2π<br />

√ a/2<br />

0 0<br />

2π<br />

0<br />

1<br />

2 a2 r − 8r 5 dr dθ<br />

1<br />

24 a3 dθ = 1 12 a3 πK<br />

27. The region of integration is the region above the cone z = x 2 + y 2 ,orz = r, and below the plane z =2.Also,wehave<br />

−2 ≤ y ≤ 2 with − 4 − y 2 ≤ x ≤ 4 − y 2 which describes a circle of radius 2 in the xy-plane centered at (0, 0). Thus,<br />

2<br />

−2<br />

√ 4−y 2 2<br />

√<br />

xz dz dx dy =<br />

− 4−y<br />

√x 2 2 +y 2<br />

2π<br />

2<br />

2<br />

0<br />

0<br />

r<br />

(r cos θ) z r dz dr dθ =<br />

= 2π 2<br />

0 0 r2 (cos θ) 1<br />

z2 z=2<br />

dr dθ = 1<br />

2 z=r 2<br />

<br />

4r 2 − r 4 dr = 1 2<br />

= 1 2<br />

2π<br />

cos θdθ 2<br />

0 0<br />

2π<br />

2<br />

2<br />

0<br />

2π<br />

0<br />

0<br />

[sin θ]2π<br />

0<br />

r<br />

r 2 (cos θ) zdzdrdθ<br />

2<br />

0 r2 (cos θ) 4 − r 2 dr dθ<br />

4<br />

3 r3 − 1 5 r5 2<br />

0 =0<br />

29. (a) The mountain comprises a solid conical region C. The work done in lifting a small volume of material ∆V with density<br />

g(P ) to a height h(P ) above sea level is h(P )g(P ) ∆V . Summing over the whole mountain we get<br />

W = h(P )g(P ) dV .<br />

C<br />

(b) Here C is a solid right circular cone with radius R =62,000 ft, height H =12,400 ft,<br />

and density g(P )=200lb/ft 3 at all points P in C. We use cylindrical coordinates:<br />

W = 2π H<br />

0 0<br />

=400π<br />

R(1−z/H)<br />

z · 200rdrdzdθ=2π H<br />

200z 1<br />

r2 r=R(1−z/H)<br />

dz<br />

0 0 2 r=0<br />

H<br />

0<br />

z R2<br />

2<br />

<br />

1 − z H<br />

2<br />

dz = 200πR<br />

2<br />

H<br />

z<br />

=200πR 2 2<br />

H <br />

2 − 2z3<br />

3H +<br />

z4<br />

H<br />

= 200πR 2 2<br />

4H 2 0<br />

2 − 2H2<br />

3<br />

= 50 3 πR2 H 2 = 50<br />

3 π(62,000)2 (12,400) 2 ≈ 3.1 × 10 19 ft-lb<br />

0<br />

z − 2z2<br />

H + z3<br />

H 2 <br />

dz<br />

<br />

+ H2<br />

4<br />

r<br />

R = H − z<br />

H<br />

=1− z H

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!