30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

SECTION 16.7 TX.10 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ET SECTION 15.7 ¤ 249<br />

15. The region of integration is given in cylindrical coordinates by<br />

E = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4, r ≤ z ≤ 4}. This represents the solid<br />

region bounded below by the cone z = r and above by the horizontal plane z =4.<br />

4<br />

2π<br />

4 rdzdθdr = 4<br />

2π<br />

z=4<br />

0 0 r 0 0 rz dθ dr = 4<br />

2π<br />

r(4 − r) dθ dr<br />

z=r 0 0<br />

= 4<br />

0 (4r − r2 ) dr 2π<br />

0<br />

dθ = 2r 2 − 1 3 r3 4<br />

0<br />

= 32 − 64<br />

3<br />

(2π) =<br />

64π<br />

3<br />

17. In cylindrical coordinates, E is given by {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4, −5 ≤ z ≤ 4}. So<br />

<br />

x2 + y<br />

E<br />

2 dV = 2π<br />

4<br />

4<br />

√<br />

r2 rdzdrdθ= 2π<br />

dθ 4<br />

0 0 −5 0 0 r2 dr 4<br />

= θ 2π 1 r3 4 4<br />

0 3 0 z =(2π) <br />

64<br />

−5 3 (9) = 384π<br />

−5 dz<br />

<br />

θ<br />

2π<br />

19. In cylindrical coordinates E is bounded by the paraboloid z =1+r 2 , the cylinder r 2 =5or r = √ 5,andthexy-plane,<br />

so E is given by (r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ √ 5, 0 ≤ z ≤ 1+r 2 .Thus<br />

E ez dV = 2π<br />

0<br />

√ 5<br />

1+r<br />

2<br />

e z rdzdrdθ= 2π<br />

√ 5<br />

r e z z=1+r 2<br />

dr dθ = 2π<br />

√ 5<br />

0 0 0 0 z=0 0<br />

<br />

= 2π<br />

dθ √ 5<br />

0 0<br />

<br />

re 1+r2 − r<br />

dr =2π<br />

√<br />

1<br />

2 e1+r2 − 1 5<br />

2 r2 0<br />

= π(e 6 − e − 5)<br />

0<br />

r(e 1+r2 − 1) dr dθ<br />

21. In cylindrical coordinates, E is bounded by the cylinder r =1, the plane z =0, and the cone z =2r. So<br />

E = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2r} and<br />

E x2 dV = 2π 1<br />

2r<br />

r 2 cos 2 θ r dz dr dθ = 2π 1<br />

<br />

0 0 0 0 0 r 3 cos 2 θz z=2r<br />

dr dθ = 2π 1<br />

z=0 0 0 2r4 cos 2 θdrdθ<br />

= 2π<br />

2<br />

0 5 r5 cos 2 θ r=1<br />

dθ = 2 2π<br />

r=0 5<br />

cos 2 θdθ= 2 2π<br />

1+cos2θ<br />

dθ = 1 θ + 1 2π<br />

0<br />

5 2 5 2 sin 2θ = 2π 5<br />

23. (a) The paraboloids intersect when x 2 + y 2 =36− 3x 2 − 3y 2 ⇒ x 2 + y 2 =9, so the region of integration<br />

is D = (x, y) | x 2 + y 2 ≤ 9 . Then, in cylindrical coordinates,<br />

E = (r, θ, z) | r 2 ≤ z ≤ 36 − 3r 2 , 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π and<br />

V = 2π 3<br />

36 − 3r<br />

2<br />

0 0 r 2<br />

rdzdrdθ= 2π 3<br />

0 0<br />

0<br />

36r − 4r<br />

3<br />

dr dθ = 2π<br />

<br />

0 18r 2 − r 4 r=3<br />

dθ = 2π<br />

81 dθ =162π.<br />

r=0 0<br />

(b) For constant density K, m = KV =162πK from part (a). Since the region is homogeneous and symmetric,<br />

M yz = M xz =0and<br />

M xy = 2π<br />

3<br />

0 0<br />

= K 2<br />

2π<br />

0<br />

36−3r<br />

2<br />

r 2<br />

(zK) rdzdrdθ= K 2π<br />

3 r 1<br />

z2 z=36−3r 2<br />

0 0 2<br />

dr dθ<br />

z=r 2<br />

3<br />

0 r((36 − 3r2 ) 2 − r 4 ) dr dθ = K 2<br />

= K (2π) 8<br />

2 6 r6 − 216<br />

4 r4 + 1296 r2 3<br />

= πK(2430) = 2430πK<br />

2 0<br />

<br />

Myz<br />

Thus (x, y, z) =<br />

m , M xz<br />

m , M <br />

xy<br />

m<br />

2π<br />

0<br />

dθ 3<br />

0 (8r5 − 216r 3 +1296r) dr<br />

= <br />

0, 0, 2430πK<br />

162πK =(0, 0, 15).<br />

0<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!