30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION TX.10 16.5 APPLICATIONS OF DOUBLE INTEGRALS ET SECTION 15.5 ¤ 239<br />

in the Table of Integrals): xe −0.5x dx = −2xe −0.5x − −2e −0.5x dx = −2xe −0.5x − 4e −0.5x = −2(x +2)e −0.5x .<br />

Thus<br />

<br />

μ 1 =0.1 lim<br />

−2(x +2)e<br />

−0.5x t<br />

lim<br />

<br />

t→∞ 0 −5e<br />

−0.2y t<br />

t→∞<br />

0<br />

=0.1 lim(−2) (t +2)e −0.5t − 2 lim<br />

t→∞<br />

<br />

=0.1(−2)<br />

lim<br />

t→∞<br />

t +2<br />

e 0.5t<br />

− 2 <br />

(−5)(−1) = 2<br />

t→∞<br />

(−5) e −0.2t − 1 <br />

[by l’Hospital’s Rule]<br />

The expected value of Y is given by<br />

μ 2 = yf(x, y) dA = ∞ <br />

∞<br />

y0.1e −(0.5+0.2y) dy dx<br />

R 2 0 0<br />

=0.1 ∞<br />

0<br />

e −0.5x dx ∞<br />

0<br />

ye −0.2y dy =0.1 lim<br />

t→∞<br />

t<br />

0 e−0.5x dx lim<br />

t→∞<br />

t<br />

0 ye−0.2y dy<br />

To evaluate the second integral, we integrate by parts with u = y and dv = e −0.2y dy (oragainwecanuseFormula96in<br />

the Table of Integrals) which gives ye −0.2y dy = −5ye −0.2y + 5e −0.2y dy = −5(y +5)e −0.2y .Then<br />

<br />

μ 2 =0.1 lim<br />

−2e<br />

−0.5x t<br />

lim <br />

t→∞ 0 −5(y +5)e<br />

−0.2y t<br />

t→∞<br />

0<br />

<br />

=0.1 lim −2(e −0.5t − 1) <br />

lim −5 (t +5)e −0.2t − 5 <br />

t→∞ t→∞<br />

<br />

<br />

t +5<br />

=0.1(−2)(−1) · (−5) lim<br />

t→∞ e − 5 =5 [by l’Hospital’s Rule]<br />

0.2t<br />

31. (a) The random variables X and Y are normally distributed with μ 1 =45, μ 2 =20, σ 1 =0.5,andσ 2 =0.1.<br />

1<br />

The individual density functions for X and Y , then, are f 1 (x) =<br />

0.5 √ 2π e−(x−45)2 /0.5 and<br />

1<br />

f 2 (y) =<br />

0.1 √ 2π e−(y−20)2 /0.02 .SinceX and Y are independent, the joint density function is the product<br />

f(x, y) =f 1 (x)f 2 (y) =<br />

Then P (40 ≤ X ≤ 50, 20 ≤ Y ≤ 25) = 50<br />

40<br />

1<br />

0.5 √ 2π e−(x−45)2 /0.5 1<br />

0.1 √ 2π e−(y−20)2 /0.02 = 10<br />

π e−2(x−45)2 −50(y−20) 2 .<br />

25<br />

20<br />

f(x, y) dy dx =<br />

10<br />

π<br />

50<br />

25<br />

40 20 e−2(x−45)2 −50(y−20) 2 dy dx.<br />

Using a CAS or calculator to evaluate the integral, we get P (40 ≤ X ≤ 50, 20 ≤ Y ≤ 25) ≈ 0.500.<br />

(b) P (4(X − 45) 2 +100(Y − 20) 2 ≤ 2) = 10<br />

D π e−2(x−45)2 −50(y−20) 2 dA,whereD is the region enclosed by the ellipse<br />

<br />

4(x − 45) 2 + 100(y − 20) 2 =2. Solving for y gives y =20± 1 10 2 − 4(x − 45)2 , the upper and lower halves of the<br />

ellipse, and these two halves meet where y =20 [since the ellipse is centered at (45, 20)] ⇒ 4(x − 45) 2 =2 ⇒<br />

x =45± 1 √<br />

2<br />

.Thus<br />

<br />

D<br />

<br />

√<br />

45+1/ 2<br />

20+ 1<br />

10<br />

−50(y−20) 2<br />

π e−2(x−45)2 dA = 10<br />

10<br />

√2 − 4(x−45) 2<br />

e −2(x−45)2 −50(y−20) 2 dy dx.<br />

π<br />

45−1/ √ 2 20−<br />

10<br />

1 √2 − 4(x−45) 2<br />

Using a CAS or calculator to evaluate the integral, we get P (4(X − 45) 2 +100(Y − 20) 2 ≤ 2) ≈ 0.632.<br />

33. (a) If f(P, A) is the probability that an individual at A will be infected by an individual at P ,andkdAis the number of<br />

infected individuals in an element of area dA, thenf(P, A)kdAis the number of infections that should result from<br />

exposure of the individual at A to infected people in the element of area dA. IntegrationoverD gives the number of<br />

infections of the person at A due to all the infected people in D. In rectangular coordinates (with the origin at the city’s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!