30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

238 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

27. (a) f(x, y) is a joint density function, so we know R 2 f(x, y) dA =1.Sincef(x, y) =0outside the<br />

rectangle [0, 1] × [0, 2], we can say<br />

Then 2C =1 ⇒ C = 1 2 .<br />

(b) P (X ≤ 1,Y ≤ 1) = 1<br />

−∞<br />

R 2 f(x, y) dA = ∞<br />

−∞<br />

= 1<br />

0<br />

∞ f(x, y) dy dx = 1 2<br />

Cx(1 + y) dy dx<br />

−∞ 0 0<br />

= C 1<br />

0 x y + 1 2 y2 y=2<br />

y=0 dx = C 1<br />

0 4xdx= C 2x 2 1<br />

0 =2C<br />

1 f(x, y) dy dx = 1 1<br />

−∞ 0 0<br />

1<br />

x y + 1 y2 y =1<br />

dx = 1 1<br />

x 3<br />

2 2 y =0 0 2 2<br />

1<br />

x(1 + y) dy dx<br />

2<br />

dx =<br />

3 1 x2 1<br />

= 3 or 0.375<br />

4 2 0 8<br />

(c) P (X + Y ≤ 1) = P ((X, Y ) ∈ D) where D is the triangular region shown in<br />

the figure. Thus<br />

P (X + Y ≤ 1) = f(x, y) dA = 1<br />

D 0<br />

= 1<br />

0<br />

<br />

= 1 1<br />

4 0<br />

1 − x<br />

0<br />

1<br />

x(1 + y) dy dx<br />

2<br />

1<br />

x 2<br />

y + 1 y2 y =1−x<br />

2<br />

dx = 1 1<br />

x 1<br />

y =0 0 2<br />

2 x2 − 2x + 3 2<br />

<br />

dx<br />

<br />

x 3 − 4x 2 +3x <br />

dx = 1 x 4<br />

− 4 x3<br />

4 4 3 +3x2 2<br />

= 5<br />

48 ≈ 0.1042<br />

29. (a) f(x, y) ≥ 0,sof is a joint density function if R 2 f(x, y) dA =1. Here, f(x, y) =0outside the first quadrant, so<br />

R 2 f(x, y) dA = ∞<br />

0<br />

∞<br />

0<br />

0.1e −(0.5x +0.2y) dy dx =0.1 ∞<br />

0<br />

=0.1 lim<br />

t→∞<br />

t<br />

0 e−0.5x dx lim<br />

t→∞<br />

t<br />

0 e−0.2y dy =0.1 lim<br />

t→∞<br />

<br />

−2e<br />

−0.5x t<br />

0 lim<br />

t→∞<br />

∞<br />

0<br />

1<br />

0<br />

e −0.5x e −0.2y dy dx =0.1 ∞<br />

e −0.5x dx ∞<br />

e −0.2y dy<br />

0 0<br />

<br />

−5e<br />

−0.2y t<br />

0<br />

=0.1 lim<br />

t→∞<br />

−2(e −0.5t − 1) lim<br />

t→∞<br />

−5(e −0.2t − 1) =(0.1) · (−2)(0 − 1) · (−5)(0 − 1) = 1<br />

Thus f(x, y) is a joint density function.<br />

(b) (i) No restriction is placed on X,so<br />

P (Y ≥ 1) = ∞<br />

−∞<br />

∞<br />

1<br />

(ii) P (X ≤ 2,Y ≤ 4) = 2<br />

−∞<br />

f(x, y) dy dx = ∞<br />

0<br />

=0.1 ∞<br />

e −0.5x dx ∞<br />

e −0.2y dy =0.1 lim<br />

0 1<br />

=0.1 lim<br />

t→∞<br />

<br />

−2e<br />

−0.5x t<br />

0 lim<br />

t→∞<br />

(c) The expected value of X is given by<br />

∞<br />

1<br />

0.1e −(0.5x+0.2y) dy dx<br />

t<br />

t<br />

t→∞ 0 e−0.5x dx lim<br />

t→∞ 1 e−0.2y dy<br />

−5e<br />

−0.2y t<br />

=0.1 lim<br />

1 t→∞<br />

(0.1) · (−2)(0 − 1) · (−5)(0 − e −0.2 )=e −0.2 ≈ 0.8187<br />

4 f(x, y) dy dx = 2 4<br />

−∞ 0 0 0.1e−(0.5x+0.2y) dy dx<br />

=0.1 2<br />

0 e−0.5x dx 4<br />

0 e−0.2y dy =0.1 −2e −0.5x 2<br />

0<br />

=(0.1) · (−2)(e −1 − 1) · (−5)(e −0.8 − 1)<br />

<br />

−2(e −0.5t − 1) lim<br />

t→∞<br />

<br />

−5(e −0.2t − e −0.2 ) <br />

−5e<br />

−0.2y 4<br />

0<br />

=(e −1 − 1)(e −0.8 − 1) = 1 + e −1.8 − e −0.8 − e −1 ≈ 0.3481<br />

μ 1 = R 2 xf(x, y) dA = ∞<br />

0<br />

<br />

∞<br />

x0.1e −(0.5x+0.2y) dy dx<br />

0<br />

=0.1 ∞<br />

0<br />

xe −0.5x dx ∞<br />

0<br />

e −0.2y dy =0.1 lim<br />

t→∞<br />

t<br />

0 xe−0.5x dx lim<br />

t→∞<br />

t<br />

0 e−0.2y dy<br />

To evaluate the first integral, we integrate by parts with u = x and dv = e −0.5x dx (or we can use Formula 96

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!