30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION TX.10 16.5 APPLICATIONS OF DOUBLE INTEGRALS ET SECTION 15.5 ¤ 237<br />

17. I x = D y2 ρ(x, y)dA = 1<br />

e<br />

x<br />

y 2 · ydydx= 1<br />

1 y4 y=e x<br />

dx = 1 1<br />

<br />

0 0 0 4 y=0 4 0 e4x dx = 1 1 e4x 1<br />

= 1<br />

4 4 0 16 (e4 − 1),<br />

I y = D x2 ρ(x, y) dA = 1<br />

e<br />

x<br />

x 2 ydydx= 1<br />

x2 1<br />

y2 y=e x<br />

dx = 1 1<br />

0 0 0 2 y=0 2 0 x2 e 2x dx<br />

<br />

= 1 1<br />

2 2 x2 − 1 x + 1<br />

2 4 e<br />

2x 1<br />

[integrate by parts twice] = 1 0<br />

8 (e2 − 1),<br />

and I 0 = I x + I y = 1 16 (e4 − 1) + 1 8 (e2 − 1) = 1 16 (e4 +2e 2 − 3).<br />

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0, 0) and the equal sides along the positive axes.<br />

I x = a a−x<br />

y 2 k(x 2 + y 2 ) dy dx = k a a−x<br />

(x 2 y 2 + y 4 ) dy dx = k a 1<br />

0 0 0 0 0 3 x2 y 3 + 1 y5 y=a−x<br />

5<br />

dx<br />

y=0<br />

= k a 1<br />

0 3 x2 (a − x) 3 + 1 (a − x)5 dx = k <br />

1 1<br />

5 3 3 a3 x 3 − 3 4 a2 x 4 + 3 5 ax5 − 1 x6 − 1 (a − x)6 a<br />

= 7<br />

6 30 0 180 ka6 ,<br />

I y = a a−x<br />

0<br />

= k a<br />

0<br />

x 2 k(x 2 + y 2 ) dy dx = k a a−x<br />

(x 4 + x 2 y 2 ) dy dx = k a 0 0 0 0 x 4 y + 1 3 x2 y 3 y=a−x<br />

dx<br />

y=0<br />

x 4 (a − x)+ 1 3 x2 (a − x) 3 dx = k 1<br />

5 ax5 − 1 6 x6 + 1 3<br />

and I 0 = I x + I y = 7 90 ka6 .<br />

1<br />

3 a3 x 3 − 3 4 a2 x 4 + 3 5 ax5 − 1 6 x6 a<br />

0 = 7<br />

180 ka6 ,<br />

21. Using a CAS, we find m = ρ(x, y) dA = π<br />

sin x<br />

xy dy dx = π2<br />

D 0 0<br />

8 .Then<br />

x = 1 <br />

xρ(x, y) dA =<br />

8 π<br />

sin x<br />

x 2 ydydx = 2π m D<br />

π 2 0 0<br />

3 − 1 π and<br />

y = 1 <br />

yρ(x, y) dA = 8 π<br />

sin x<br />

xy 2 dy dx = 16<br />

2π<br />

m<br />

π 2 9π ,so(x, y) = 3 − 1 π , 16 <br />

.<br />

9π<br />

D<br />

0<br />

0<br />

The moments of inertia are I x = D y2 ρ(x, y) dA = π<br />

sin x<br />

xy 3 dy dx = 3π2<br />

0 0<br />

64 ,<br />

I y = D x2 ρ(x, y) dA = π<br />

sin x<br />

x 3 ydydx= π2<br />

0 0<br />

16 (π2 − 3),andI 0 = I x + I y = π2<br />

64 (4π2 − 9).<br />

23. I x = D y2 ρ(x, y)dA = h b<br />

0 0 ρy2 dx dy = ρ b<br />

dx h<br />

0 0 y2 dy = ρ x b 1 y3 h<br />

= ρb 1<br />

h3 = 1 0 3 0 3 3 ρbh3 ,<br />

I y = D x2 ρ(x, y)dA = h b<br />

0 0 ρx2 dx dy = ρ b<br />

0 x2 dx h<br />

dy = ρ 1<br />

0 3 x3 b<br />

0 [y]h 0 = 1 3 ρb3 h,<br />

and m = ρ (area of rectangle) = ρbh since the lamina is homogeneous. Hence x 2 = Iy m = 1<br />

3 ρb3 h<br />

ρbh = b2 3<br />

⇒ x = b √<br />

3<br />

and y 2 = Ix 1<br />

m = 3 ρbh3<br />

ρbh<br />

= h2<br />

3<br />

⇒ y = h √<br />

3<br />

.<br />

25. In polar coordinates, the region is D = (r, θ) | 0 ≤ r ≤ a, 0 ≤ θ ≤ π 2<br />

<br />

,so<br />

I x = D y2 ρdA= π/2 a ρ(r sin 0 0 θ)2 rdrdθ= ρ π/2<br />

sin 2 dθ a<br />

0<br />

= ρ 1<br />

θ − 1 sin 2θ π/2 1 r4 a<br />

= ρ <br />

π 1 a4 = 1 2 4 0 4 0 4 4 16 ρa4 π,<br />

0 r3 dr<br />

I y = D x2 ρdA= π/2 a ρ(r cos 0 0 θ)2 rdrdθ= ρ π/2<br />

cos 2 dθ a<br />

0<br />

= ρ 1<br />

θ + 1 sin 2θ π/2 1 r4 a<br />

= ρ <br />

π 1 a4 = 1 2 4 0 4 0 4 4 16 ρa4 π,<br />

0 r3 dr<br />

and m = ρ · A(D) =ρ · 1<br />

4 πa2 since the lamina is homogeneous. Hence x 2 = y 2 =<br />

1<br />

16 ρa4 π<br />

1<br />

4 ρa2 π = a2<br />

4<br />

⇒ x = y = a 2 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!