30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

236 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

9. Note that sin(πx/L) ≥ 0 for 0 ≤ x ≤ L.<br />

m = L<br />

0<br />

sin(πx/L)<br />

ydydx= L 1<br />

0 0 2 sin2 (πx/L) dx = 1 2<br />

M y = L sin(πx/L)<br />

<br />

x · ydydx= 1 L<br />

0 0 2 0<br />

= 1 · x 1<br />

x − L sin(2πx/L) L<br />

− 1 L<br />

2 2 4π 0 2 0<br />

= 1 4 L2 − 1 2<br />

<br />

L<br />

1<br />

4 x2 + cos(2πx/L) L2<br />

= 1 4π 2 4 L2 − 1 2<br />

0<br />

1 x − L sin(2πx/L) L<br />

= 1 L,<br />

2 4π 0 4<br />

<br />

x sin2 (πx/L) dx<br />

1<br />

2 x − L 4π sin(2πx/L) dx<br />

integrate by parts with<br />

u = x, dv =sin 2 (πx/L) dx<br />

<br />

1<br />

4 L2 + L2<br />

4π 2 − L2<br />

4π 2 <br />

= 1 8 L2 ,<br />

M x = L sin(πx/L)<br />

y · ydydx= L<br />

<br />

1<br />

0 0 0 3 sin3 (πx/L) dx = 1 L<br />

<br />

3 0 1 − cos 2 (πx/L) sin(πx/L) dx<br />

[substitute u =cos(πx/L)] ⇒ du = − π sin(πx/L)]<br />

L<br />

<br />

= 1 3 −<br />

L<br />

π cos(πx/L) −<br />

1<br />

3 cos3 (πx/L) L<br />

= − L<br />

0 3π −1+<br />

1<br />

− 1+ 1<br />

3 3 =<br />

4<br />

L. 9π<br />

Hence m = L L 2<br />

4 , (x, y) = /8<br />

L/4 , 4L/(9π) <br />

=<br />

L/4<br />

L<br />

2 , 16 <br />

.<br />

9π<br />

11. ρ(x, y) =ky = kr sin θ, m = π/2 1<br />

0 0 kr2 sin θdrdθ = 1 k π/2<br />

3<br />

sin θdθ = 1 k 0 3<br />

− cos θ π/2<br />

= 1 k,<br />

0 3<br />

M y = π/2 1<br />

0 0 kr3 sin θ cos θdrdθ= 1 k π/2<br />

4<br />

sin θ cos θdθ= 1 k 0 8<br />

− cos 2θ π/2<br />

= 1 k,<br />

0 8<br />

M x = π/2<br />

0<br />

1<br />

0 kr3 sin 2 θdrdθ= 1 k π/2<br />

sin 2 θdθ= 1 k θ +sin2θ π/2<br />

= π k.<br />

4 0 8 0 16<br />

Hence (x, y) = 3<br />

8 , 3π<br />

16<br />

.<br />

13. ρ(x, y) =k x 2 + y 2 = kr,<br />

m = ρ(x, y)dA = π 2<br />

kr · rdrdθ<br />

D 0 1<br />

= k π<br />

0 dθ 2<br />

1 r2 dr = k(π) 1<br />

3 r3 2<br />

1 = 7 3 πk,<br />

<br />

M y = xρ(x, y)dA = π 2 (r cos θ)(kr) rdrdθ= k π<br />

cos θdθ 2<br />

D 0 1 0 1 r3 dr<br />

= k sin θ π 1 r4 2<br />

= k(0) <br />

15<br />

0 4 1 4 =0<br />

[this is to be expected as the region and density<br />

function are symmetric about the y-axis]<br />

<br />

Hence (x, y) =<br />

M x = yρ(x, y)dA = π 2 (r sin θ)(kr) rdrdθ= k π<br />

sin θdθ 2<br />

D 0 1 0<br />

= k − cos θ π 1 r4 2<br />

= k(1 + 1) <br />

15<br />

0 4 1 4 =<br />

15<br />

k. 2<br />

0, 15k/2<br />

7πk/3<br />

<br />

= 0, 45<br />

14π<br />

<br />

.<br />

15. Placing the vertex opposite the hypotenuse at (0, 0), ρ(x, y) =k(x 2 + y 2 ).Then<br />

m = a<br />

0<br />

a − x<br />

By symmetry,<br />

k x 2 + y 2 dy dx = k a<br />

0 0<br />

Hence (x, y) = 2<br />

5 a, 2 5 a .<br />

1 r3 dr<br />

<br />

ax 2 − x 3 + 1 3 (a − x)3 dx = k 1<br />

3 ax3 − 1 4 x4 − 1 12 (a − x)4 a<br />

0 = 1 6 ka4 .<br />

M y = M x = a a − x<br />

ky(x 2 + y 2 ) dy dx = k a<br />

1 (a − 0 0 0 2 x)2 x 2 + 1 (a − x)4 dx<br />

4<br />

= k 1<br />

6 a2 x 3 − 1 4 ax4 + 1<br />

10 x5 − 1 20 (a − x)5 a<br />

0 = 1 15 ka5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!