30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

234 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15<br />

TX.10<br />

27. The given solid is the region inside the cylinder x 2 + y 2 =4between the surfaces z = 64 − 4x 2 − 4y 2<br />

and z = − 64 − 4x 2 − 4y 2 .So<br />

<br />

V =<br />

64 − 4x2 − 4y 2 −<br />

− <br />

64 − 4x 2 − 4y 2 dA =<br />

<br />

2 64 − 4x 2 − 4y 2 dA<br />

x 2 + y 2 ≤ 4<br />

=4 2π<br />

0<br />

x 2 +y 2 ≤ 4<br />

2<br />

√<br />

0 16 − r2 rdrdθ=4 2π<br />

dθ 2<br />

r √ 16 − r<br />

0 0 2 dr =4 θ 2π<br />

0<br />

=8π √ <br />

− 1 3 (12 3/2 − 16 2/3 )= 8π 3 64 − 24 3<br />

<br />

− 1 3 (16 − r2 ) 3/2 2<br />

0<br />

29.<br />

3<br />

−3<br />

√ 9−x 2<br />

sin(x 2 + y 2 )dy dx =<br />

0<br />

π<br />

3<br />

0<br />

0<br />

sin r 2 rdrdθ<br />

= π<br />

0 dθ 3<br />

0 r sin r 2 dr =[θ] π 0<br />

<br />

−<br />

1<br />

2 cos r 2 3<br />

0<br />

= π − 1 2<br />

(cos 9 − 1) =<br />

π<br />

(1 − cos 9)<br />

2<br />

31.<br />

π/4<br />

√ 2<br />

(r cos θ + r sin θ) rdrdθ = π/4<br />

(cos θ +sinθ) dθ √ 2<br />

r 2 dr<br />

0 0 0 0<br />

<br />

=[sinθ − cos θ] π/4 1<br />

3 r3√ 2<br />

=<br />

√2<br />

0<br />

2 − √ 2<br />

2 − 0+1 <br />

· 1<br />

3<br />

0<br />

<br />

2<br />

√<br />

2 − 0<br />

<br />

=<br />

2 √ 2<br />

3<br />

33. The surface of the water in the pool is a circular disk D with radius 20 ft. If we place D on coordinate axes with the origin at<br />

35.<br />

the center of D and define f(x, y) to be the depth of the water at (x, y), then the volume of water in the pool is the volume of<br />

the solid that lies above D = (x, y) | x 2 + y 2 ≤ 400 and below the graph of f(x, y). We can associate north with the<br />

positive y-direction, so we are given that the depth is constant in the x-direction and the depth increases linearly in the<br />

y-direction from f(0, −20) = 2 to f(0, 20) = 7. The trace in the yz-plane is a line segment from (0, −20, 2) to (0, 20, 7).<br />

The slope of this line is<br />

7 − 2<br />

= 1 , so an equation of the line is z − 7= 1 (y − 20) ⇒ z = 1 y + 9<br />

20 − (−20) 8 8 8 2<br />

.Sincef(x, y) is<br />

independent of x, f(x, y) = 1 y + 9 . Thus the volume is given by 8 2<br />

f(x, y) dA, which is most conveniently evaluated<br />

D<br />

using polar coordinates. Then D = {(r, θ) | 0 ≤ r ≤ 20, 0 ≤ θ ≤ 2π} and substituting x = r cos θ, y = r sin θ the integral<br />

becomes<br />

2π<br />

0<br />

20<br />

0<br />

1 r sin θ + 9 2π<br />

<br />

8 2 rdrdθ= 1<br />

0 24 r3 sin θ + 9 r2 r =20<br />

4 r =0<br />

Thus the pool contains 1800π ≈ 5655 ft 3 of water.<br />

1<br />

1/ √ 2<br />

x<br />

√1 − x 2 xy dy dx +<br />

=<br />

π/4<br />

2<br />

= 15<br />

4<br />

0 1<br />

π/4<br />

0<br />

√ 2 x<br />

1<br />

r 3 cos θ sin θdrdθ=<br />

0<br />

= − 1000 cos θ + 900θ 2π<br />

= 1800π<br />

3 0<br />

2<br />

xy dy dx +<br />

π/4<br />

sin θ cos θdθ= 15 sin 2 θ<br />

4 2<br />

0<br />

√ 4 − x 2<br />

xy dy dx<br />

√<br />

2 0<br />

r<br />

4<br />

r =2<br />

4 cos θ sin θ dθ<br />

π/4<br />

0<br />

= 15<br />

16<br />

r =1<br />

dθ = 2π<br />

1000<br />

sin θ +900 dθ<br />

0 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!