30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

SECTION 16.4 TX.10 DOUBLE INTEGRALS IN POLAR COORDINATES ET SECTION 15.4 ¤ 233<br />

15. One loop is given by the region<br />

D = {(r, θ) |−π/6 ≤ θ ≤ π/6, 0 ≤ r ≤ cos 3θ },sotheareais<br />

π/6<br />

cos 3θ<br />

π/6<br />

r=cos 3θ<br />

1<br />

dA =<br />

rdrdθ=<br />

D<br />

−π/6 0<br />

−π/6 2 r2 dθ<br />

π/6<br />

1<br />

=<br />

−π/6 2 cos2 3θdθ=2<br />

θ + 1 π/6<br />

6 sin 6θ<br />

π/6<br />

0<br />

1<br />

2<br />

r=0<br />

1+cos6θ<br />

2<br />

<br />

dθ<br />

= 1 2<br />

17. By symmetry,<br />

0<br />

= π 12<br />

A =2 π/4<br />

0<br />

sin θ<br />

rdrdθ=2 π/4<br />

0 0<br />

1 r2 r=sin θ<br />

dθ<br />

2<br />

r=0<br />

= π/4<br />

sin 2 θdθ= π/4 1<br />

(1 − cos 2θ) dθ<br />

0 0 2<br />

<br />

= 1 2 θ −<br />

1<br />

sin 2θ π/4<br />

2 0<br />

<br />

= 1 π − 1 sin π − 0+ 1 sin 0 = 1 (π − 2)<br />

2 4 2 2 2 8<br />

19. V = x 2 + y 2 ≤4<br />

<br />

x2 + y 2 dA = 2π 2<br />

√<br />

r2 rdrdθ= 2π<br />

dθ 2<br />

0 0 0 0 r2 dr = θ 2π 1 r3 2<br />

=2π <br />

8<br />

0 3 0 3 =<br />

16<br />

π 3<br />

21. The hyperboloid of two sheets −x 2 − y 2 + z 2 =1intersects the plane z =2when −x 2 − y 2 +4=1or x 2 + y 2 =3.Sothe<br />

solid region lies above the surface z = 1+x 2 + y 2 and below the plane z =2for x 2 + y 2 ≤ 3, and its volume is<br />

V =<br />

<br />

x 2 + y 2 ≤ 3<br />

2 − 1+x 2 + y 2 <br />

dA =<br />

2π<br />

√ 3<br />

0<br />

0<br />

(2 − 1+r 2 ) rdrdθ<br />

= 2π<br />

dθ √ 3<br />

(2r − r √ 1+r<br />

0 0 2 )dr = θ <br />

2π<br />

r √ 2 − 1 (1 + 0<br />

3 r2 ) 3/2 3<br />

0<br />

=2π 3 − 8 − 0+ 1<br />

3 3 =<br />

4<br />

π 3<br />

23. By symmetry,<br />

<br />

<br />

2π<br />

a 2π<br />

V =2<br />

a2 − x 2 − y 2 dA =2 a2 − r rdrdθ=2 2 dθ<br />

0 0<br />

0<br />

x 2 + y 2 ≤ a 2<br />

=2 θ <br />

<br />

2π<br />

a<br />

− 1 0 3 (a2 − r 2 ) 3/2 =2(2π) 0+ 1 a3 = 4π 3 3 a3<br />

0<br />

a<br />

0<br />

r a 2 − r 2 dr<br />

25. The cone z = x 2 + y 2 intersects the sphere x 2 + y 2 + z 2 =1when x 2 + y 2 +<br />

<br />

x2 + y 2 2<br />

=1or x 2 + y 2 = 1 2 .So<br />

V =<br />

<br />

x 2 + y 2 ≤ 1/2<br />

= 2π<br />

dθ 1/ √ 2<br />

0 0<br />

<br />

1 − x2 − y 2 − x 2 + y 2 <br />

dA =<br />

2π<br />

<br />

√<br />

1/ 2<br />

0<br />

0<br />

<br />

1 − r2 − r<br />

rdrdθ<br />

√<br />

r 1 − r2 − r 2 dr = θ <br />

√<br />

2π<br />

1/ 2<br />

− 1 (1 − 0 3 r2 ) 3/2 − 1 3 r3 =2π √ <br />

− 1 √2<br />

1<br />

− 1 = π 3 3 2 − 2<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!