30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

232 ¤ CHAPTER 16 MULTIPLE INTEGRALS ET CHAPTER 15 TX.10<br />

<br />

59.<br />

D (x2 tan x + y 3 +4)dA = D x2 tan xdA+ D y3 dA + 4 dA. D Butx2 tan x is an odd function of x and D is<br />

symmetric with respect to the y-axis, so D x2 tan xdA=0. Similarly, y 3 isanoddfunctionofy and D is symmetric with<br />

respect to the x-axis, so D y3 dA =0.Thus<br />

<br />

D (x2 tan x + y 3 +4)dA =4 dA =4(areaofD) =4· π√ 2 2<br />

D =8π<br />

61. Since 1 − x 2 − y 2 ≥ 0, we can interpret <br />

D 1 − x2 − y 2 dA as the volume of the solid that lies below the graph of<br />

z = 1 − x 2 − y 2 and above the region D in the xy-plane. z = 1 − x 2 − y 2 is equivalent to x 2 + y 2 + z 2 =1, z ≥ 0<br />

which meets the xy-plane in the circle x 2 + y 2 =1, the boundary of D. Thus, the solid is an upper hemisphere of radius 1<br />

<br />

which has volume 1 4 π (1)3 = 2 π.<br />

2 3 3<br />

16.4 Double Integrals in Polar Coordinates ET 15.4<br />

1. The region R is more easily described by polar coordinates: R = <br />

(r, θ) | 0 ≤ r ≤ 4, 0 ≤ θ ≤ 3π 2 .<br />

Thus f(x, y) dA = 3π/2 4<br />

f(r cos θ, r sin θ) rdrdθ.<br />

R 0 0<br />

3. The region R is more easily described by rectangular coordinates: R = (x, y) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 2 x + 1 2<br />

<br />

.<br />

Thus f(x, y) dA = 1<br />

(x+1)/2<br />

f(x, y) dy dx.<br />

R −1 0<br />

5. The integral 2π<br />

7<br />

π 4<br />

rdrdθrepresents the area of the region<br />

R = {(r, θ) | 4 ≤ r ≤ 7, π ≤ θ ≤ 2π},thelowerhalfofaring.<br />

2π<br />

<br />

7<br />

rdrdθ= 2π <br />

7<br />

dθ rdr π 4<br />

π<br />

4<br />

= θ 2π 1 r2 7<br />

= π · 1<br />

33π<br />

(49 − 16) =<br />

π 2 4 2 2<br />

7. The disk D can be described in polar coordinates as D = {(r, θ) | 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π}. Then<br />

D xy dA = 2π<br />

<br />

3<br />

(r cos θ)(r sin θ) rdrdθ= 2π<br />

<br />

3<br />

sin θ cos θdθ<br />

0 0 0 0 r3 dr = 1<br />

2 sin2 θ 2π 1 r4 3<br />

=0.<br />

0 4 0<br />

9.<br />

R cos(x2 + y 2 ) dA = π<br />

3<br />

0 0 cos(r2 ) rdrdθ= π<br />

dθ <br />

3 r 0 0 cos(r2 ) dr<br />

= θ π 1<br />

0 2 sin(r2 ) 3<br />

= π · 1 (sin 9 − sin 0) = π sin 9<br />

0 2 2<br />

11.<br />

D e−x2 −y 2 dA = π/2<br />

<br />

2<br />

<br />

π/2<br />

<br />

−π/2 0 e−r2 rdrdθ= dθ 2<br />

−π/2 0 re−r2 dr<br />

= θ π/2<br />

−π/2<br />

− 1 2 e−r2 2<br />

= π <br />

− 1 2 (e −4 − e 0 )= π (1 − 2 e−4 )<br />

0<br />

13. R is the region shown in the figure, and can be described<br />

by R = {(r, θ) | 0 ≤ θ ≤ π/4, 1 ≤ r ≤ 2}. Thus<br />

R arctan(y/x) dA = π/4<br />

2<br />

arctan(tan θ) rdrdθsince y/x =tanθ.<br />

0 1<br />

Also, arctan(tan θ) =θ for 0 ≤ θ ≤ π/4, so the integral becomes<br />

π/4<br />

2 θrdrdθ= π/4<br />

θdθ 2<br />

rdr= 1<br />

θ2 π/4 1 r2 2<br />

= π2 · 3 = 3<br />

0 1 0 1 2 0 2 1 32 2 64 π2 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!