30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

SECTION 16.3 TX.10 DOUBLE INTEGRALS OVER GENERAL REGIONS ET SECTION 15.3 ¤ 231<br />

47. 4<br />

0<br />

2<br />

√ x<br />

1<br />

y 3 +1 dy dx = 2<br />

0<br />

2<br />

=<br />

0<br />

y<br />

2<br />

0<br />

1<br />

dx dy<br />

y 3 +1<br />

1 x=y<br />

2<br />

x<br />

2<br />

dy = y 3 +1<br />

x=0<br />

0<br />

y 2<br />

y 3 +1 dy<br />

= 1 ln y 3 +1 2<br />

= 1 (ln 9 − ln 1) = 1 ln 9<br />

3 3 3<br />

0<br />

49.<br />

1<br />

π/2<br />

0<br />

arcsin y<br />

= π/2<br />

0<br />

cos x 1+cos 2 xdxdy<br />

sin x<br />

0<br />

cos x √ 1+cos 2 xdydx<br />

= π/2<br />

0<br />

cos x √ 1+cos 2 x y y=sin x<br />

y=0<br />

= π/2<br />

0<br />

cos x √ 1+cos 2 x sin xdx<br />

dx<br />

<br />

= 0<br />

−u √ <br />

1+u<br />

1 2 du = − 1 3 1+u<br />

2 3/2<br />

0<br />

1<br />

√ √ <br />

= 1 3 8 − 1 =<br />

1<br />

3 2 2 − 1<br />

Let u =cosx, du = − sin xdx,<br />

dx = du/(− sin x)<br />

<br />

51. D = {(x, y) | 0 ≤ x ≤ 1, − x +1≤ y ≤ 1} ∪ {(x, y) | −1 ≤ x ≤ 0, x +1≤ y ≤ 1}<br />

<br />

D<br />

∪ {(x, y) | 0 ≤ x ≤ 1, − 1 ≤ y ≤ x − 1} ∪ {(x, y) | −1 ≤ x ≤ 0, − 1 ≤ y ≤−x − 1}, all type I.<br />

x 2 dA =<br />

=4<br />

1<br />

1<br />

0 1 − x<br />

1<br />

1<br />

0<br />

1 − x<br />

0<br />

1<br />

x 2 dy dx + x 2 dy dx +<br />

−1 x +1<br />

1<br />

x − 1<br />

0<br />

−1<br />

0<br />

x 2 dy dx +<br />

−1<br />

−x − 1<br />

x 2 dy dx [by symmetry of the regions and because f(x, y) =x 2 ≥ 0]<br />

−1<br />

x 2 dy dx<br />

=4 1<br />

0 x3 dx =4 1<br />

1<br />

4 0<br />

53. Here Q = (x, y) | x 2 + y 2 ≤ 1 ,x≥ 0,y ≥ 0 ,and0 ≤ (x 2 + y 2 ) 2 ≤ <br />

1 2<br />

4 4<br />

⇒ − 1<br />

16 ≤−(x2 + y 2 ) 2 ≤ 0 so<br />

e −1/16 ≤ e −(x2 +y 2 ) 2 ≤ e 0 =1since e t is an increasing function. We have A(Q) = 1 π <br />

1 2<br />

= π , so by Property 11,<br />

4 2 16<br />

e −1/16 A(Q) ≤ Q e−(x2 +y 2 ) 2 dA ≤ 1 · A(Q) ⇒ π 16 e−1/16 ≤ Q e−(x2 +y 2 ) 2 dA ≤ π or we can say<br />

16<br />

0.1844 < Q e−(x2 +y 2 ) 2 dA < 0.1964. (We have rounded the lower bound down and the upper bound up to preserve the<br />

inequalities.)<br />

55. The average value of a function f of two variables defined on a rectangle R was<br />

<br />

defined in Section 16.1 [ET 15.1] as f ave = 1 f(x, y)dA. Extending<br />

A(R) R<br />

<br />

this definition to general regions D,wehavef ave = 1 f(x, y)dA.<br />

A(D)<br />

Here D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 3x},soA(D) = 1 (1)(3) = 3 and<br />

2 2<br />

<br />

f ave = 1<br />

1 1<br />

3x<br />

f(x, y)dA = xy dy dx<br />

A(D)<br />

D 3/2 0 0<br />

<br />

= 2 1<br />

1 xy2 y=3x<br />

dx = 1 1<br />

3 0 2 y=0 3 0 9x3 dx = 3 x4 1<br />

= 3<br />

4 0 4<br />

57. Since m ≤ f(x, y) ≤ M, mdA≤ f(x, y) dA ≤ MdAby (8) ⇒<br />

D D D<br />

m 1 dA ≤ f(x, y) dA ≤ M 1 dA by (7) ⇒ mA(D) ≤ f(x, y) dA ≤ MA(D) by (10).<br />

D D D D<br />

D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!