30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

SECTION 16.3 TX.10 DOUBLE INTEGRALS OVER GENERAL REGIONS ET SECTION 15.3 ¤ 227<br />

29. Here we need the volume of the solid lying under the surface z = x sec 2 y and above the rectangle R =[0, 2] × [0,π/4] in the<br />

xy-plane.<br />

V = 2 π/4<br />

x sec 2 ydydx= 2<br />

xdx π/4<br />

sec 2 ydy= 1<br />

x2 2 π/4<br />

0 0 0 0 2 0 tan y<br />

0<br />

=(2− 0)(tan π − tan 0) = 2(1 − 0) = 2<br />

4<br />

31. The solid lies below the surface z =2+x 2 +(y − 2) 2 and above the plane z =1for −1 ≤ x ≤ 1, 0 ≤ y ≤ 4. Thevolume<br />

of the solid is the difference in volumes between the solid that lies under z =2+x 2 +(y − 2) 2 over the rectangle<br />

R =[−1, 1] × [0, 4] andthesolidthatliesunderz =1over R.<br />

V = 4 1 [2 + 0 −1 x2 +(y − 2) 2 ] dx dy − 4<br />

0<br />

= 4<br />

0<br />

= 4<br />

0<br />

1<br />

−1 (1) dx dy = 4<br />

0<br />

<br />

(2 +<br />

1<br />

3 +(y − 2)2 ) − (−2 − 1 3 − (y − 2)2 ) dy − [x] 1 −1 [y]4 0<br />

14<br />

3 +2(y − 2)2 dy − [1 − (−1)][4 − 0] = 14<br />

3 y + 2 3 (y − 2)3 4<br />

= 56<br />

3 + 16 3<br />

<br />

− 0 −<br />

16<br />

3 − 8=<br />

88<br />

64<br />

− 8=<br />

3 3<br />

33. In Maple, we can calculate the integral by defining the integrand as f<br />

and then using the command int(int(f,x=0..1),y=0..1);.<br />

In Mathematica, we can use the command<br />

Integrate[f,{x,0,1},{y,0,1}]<br />

We find that R x5 y 3 e xy dA =21e − 57 ≈ 0.0839. Wecanuseplot3d<br />

(in Maple) or Plot3D (in Mathematica) to graph the function.<br />

35. R is the rectangle [−1, 1] × [0, 5]. Thus, A(R) =2· 5=10and<br />

<br />

2x +<br />

1<br />

3 x3 + x(y − 2) 2 x =1<br />

x = −1 dy − 1<br />

−1 dx 4<br />

0 dy<br />

0 − (2)(4)<br />

f ave = 1 <br />

A(R)<br />

f(x, y) dA = 1 5<br />

1<br />

<br />

R 10 0 −1 x2 ydxdy= 1 5<br />

1<br />

10 0 3 x3 y x =1<br />

dy = 1 5<br />

x = −1 10 0<br />

2<br />

ydy= 1 1 y2 5<br />

= 5 .<br />

3 10 3 0 6<br />

37. Let f(x, y) = x − y<br />

(x + y) .ThenaCASgives 1 1 f(x, y) dy dx = 1 and 1 1 f(x, y) dx dy = − 1 .<br />

3 0 0 2 0 0 2<br />

To explain the seeming violation of Fubini’s Theorem, note that f has an infinite discontinuity at (0, 0) and thus does not<br />

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their<br />

lower limits of integration.<br />

16.3 Double Integrals over General Regions ET 15.3<br />

1.<br />

3.<br />

5.<br />

4<br />

0<br />

1<br />

0<br />

√ y<br />

xy 2 dx dy = 4<br />

1<br />

0 0 2 x2 y 2 x= √ y<br />

dy = 4 1<br />

x=0 0 2 y2 [( <br />

y ) 2 − 0 2 ]dy = 1 4<br />

<br />

2 0 y3 dy = 1 1 y4 4<br />

= 1<br />

2 4 0 2<br />

(64 − 0) = 32<br />

x<br />

(1 + 2y)dy dx = 1<br />

<br />

x 2 0 y + y<br />

2 y=x<br />

dx = 1<br />

<br />

y=x 2 0 x + x 2 − x 2 − (x 2 ) 2 dx<br />

π/2<br />

cos θ<br />

e sin θ dr dθ = π/2<br />

0 0 0<br />

= 1<br />

0 (x − x4 )dx = 1<br />

2 x2 − 1 5 x5 1<br />

0 = 1 2 − 1 5 − 0+0= 3 10<br />

<br />

re<br />

sin θ r=cos θ<br />

r=0<br />

dθ = π/2<br />

(cos θ) e sin θ dθ = e sin θ π/2<br />

= e sin(π/2) − e 0 = e − 1<br />

0 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!