30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 16.2 ITERATED INTEGRALS ET SECTION 15.2 ¤ 225<br />

15. To calculate the estimates using a programmable calculator, we can use an algorithm<br />

similartothatofExercise5.1.7[ET 5.1.7]. In Maple, we can define the function<br />

f(x, y) = √ 1+xe −y (calling it f), load the student package, and then use the<br />

command<br />

middlesum(middlesum(f,x=0..1,m),<br />

y=0..1,m);<br />

to get the estimate with n = m 2 squares of equal size. Mathematica has no special<br />

Riemann sum command, but we can define f andthenusenestedSum commands to<br />

calculate the estimates.<br />

n estimate<br />

1 1.141606<br />

4 1.143191<br />

16 1.143535<br />

64 1.143617<br />

256 1.143637<br />

1024 1.143642<br />

17. If we divide R into mn subrectangles, R kdA≈ m <br />

But f m<br />

x ∗ ij,yij<br />

∗ = k always and<br />

i =1<br />

points,<br />

<br />

m<br />

n<br />

i =1 j =1<br />

R kdA=<br />

lim<br />

i =1 j =1<br />

n<br />

f <br />

x ∗ ij,yij ∗ ∆A for any choice of sample points x<br />

∗<br />

ij ,yij ∗ .<br />

n<br />

∆A = area of R =(b − a)(d − c). Thus, no matter how we choose the sample<br />

j =1<br />

f m<br />

x ∗ ij,yij<br />

∗ ∆A = k<br />

i =1<br />

m<br />

n<br />

m,n→∞ i =1 j =1<br />

n<br />

∆A = k(b − a)(d − c) and so<br />

j =1<br />

f x ∗ ij,yij ∗ ∆A = lim k m<br />

m,n→∞ i =1<br />

n<br />

∆A =<br />

j =1<br />

lim<br />

m,n→∞<br />

k(b − a)(d − c) =k(b − a)(d − c).<br />

16.2 Iterated Integrals ET 15.2<br />

1.<br />

3.<br />

5.<br />

7.<br />

9.<br />

<br />

x=5<br />

5<br />

0 12x2 y 3 dx =<br />

12 x3<br />

3 y3 =4x 3 y 3 x=5<br />

x=0 =4(5)3 y 3 − 4(0) 3 y 3 = 500y 3 ,<br />

x=0<br />

<br />

1<br />

0 12x2 y 3 dy =<br />

12x 2 y 4 y=1<br />

=3x 2 y 4 y=1<br />

4<br />

y=0 =3x2 (1) 4 − 3x 2 (0) 4 =3x 2<br />

3<br />

1<br />

2<br />

0<br />

2<br />

0<br />

y=0<br />

1 (1 + 4xy) dx dy = 3<br />

<br />

0 1 x +2x 2 y x=1<br />

dy = 3<br />

(1 + 2y) dy = y + y 2 3<br />

=(3+9)− (1 + 1) = 10<br />

x=0 1 1<br />

π/2<br />

0<br />

x sin ydydx= 2<br />

0 xdx π/2<br />

0<br />

sin ydy [as in Example 5] =<br />

<br />

2<br />

<br />

1 1 (2x + (2x + y) 9<br />

0 y)8 dx dy =<br />

2 9<br />

4<br />

2<br />

1<br />

1<br />

= 1 18<br />

x<br />

y + y x<br />

<br />

dy dx =<br />

0<br />

2<br />

0<br />

x=1<br />

x=0<br />

[(2 + y) 9 − (0 + y) 9 ] dy = 1 18<br />

x<br />

2<br />

2<br />

2 π/2<br />

− cos y =(2− 0)(0 + 1) = 2<br />

0<br />

0<br />

dy [substitute u =2x + y ⇒ dx = 1 2 du]<br />

(2 + y)<br />

10<br />

= 1<br />

180 [(410 − 2 10 ) − (2 10 − 0 10 )] = 1,046,528<br />

180<br />

= 261,632<br />

45<br />

4<br />

1<br />

<br />

x ln |y| + 1 x · 1 y=2<br />

2 y2 dx =<br />

y=1<br />

4<br />

1<br />

10<br />

2<br />

− y10<br />

10<br />

0<br />

=8ln2+ 3 2 ln 4 − 1 2 ln 2 = 15 2 ln 2 + 3 ln 41/2 = 21<br />

2 ln 2<br />

<br />

x ln 2 + 3 <br />

dx = 1<br />

2<br />

2x<br />

x2 ln 2 + 3 ln |x| 4<br />

2 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!