30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

TX.10<br />

CHAPTER 15 REVIEW ET CHAPTER 14 ¤ 217<br />

Thus<br />

x 2 ∂ 2 z<br />

∂x − ∂ 2 z<br />

2 y2<br />

∂y = 2y ∂z<br />

2 x ∂v + x2 y 2 ∂ 2 z<br />

∂u − 2 2y2<br />

= 2y x<br />

∂z<br />

∂v − 4y2<br />

since y = xv = uv<br />

y or y2 = uv.<br />

<br />

43. ∇f =<br />

z 2 √ ye<br />

x √y , xz2 e x√ y<br />

2 √ y , 2zex√ y<br />

∂ 2 z ∂z<br />

=2v<br />

∂u∂v ∂v − 4uv<br />

<br />

= ze x√ y<br />

z √ y,<br />

∂ 2 z<br />

∂u∂v + y2<br />

x 2 ∂ 2 z<br />

∂v 2 − x2 y 2 ∂ 2 z<br />

∂u 2 − 2y2<br />

<br />

xz<br />

2 √ y , 2<br />

∂2 z<br />

∂u∂v<br />

45. ∇f = h1/ √ x, −2yi, ∇f(1, 5) = h1, −10i, u = 1 5 h3, −4i. ThenD u f(1, 5) = 43<br />

5 .<br />

47. ∇f = 2xy, x 2 +1/ 2 √ y , |∇f(2, 1)| = 4, 9 2<br />

direction 4, 9 2<br />

<br />

.<br />

∂ 2 z<br />

∂u∂v − y2 ∂ 2 z<br />

x 2 ∂v 2<br />

. Thus the maximum rate of change of f at (2, 1) is<br />

√<br />

145<br />

2<br />

in the<br />

49. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at<br />

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where<br />

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes<br />

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of<br />

wind speed in the direction given is approximately<br />

50 − 45<br />

8<br />

= 5 8<br />

=0.625 knot/mi.<br />

51. f(x, y) =x 2 − xy + y 2 +9x − 6y +10 ⇒ f x =2x − y +9,<br />

f y = −x +2y − 6, f xx =2=f yy , f xy = −1. Thenf x =0and f y =0<br />

imply y =1, x = −4. Thus the only critical point is (−4, 1) and<br />

f xx(−4, 1) > 0, D(−4, 1) = 3 > 0,sof(−4, 1) = −11 is a local minimum.<br />

53. f(x, y) =3xy − x 2 y − xy 2 ⇒ f x =3y − 2xy − y 2 ,<br />

f y =3x − x 2 − 2xy, f xx = −2y, f yy = −2x, f xy =3− 2x − 2y. Then<br />

f x =0implies y(3 − 2x − y) =0so y =0or y =3− 2x. Substituting into<br />

f y =0implies x(3 − x) =0or 3x(−1+x) =0. Hence the critical points are<br />

(0, 0), (3, 0), (0, 3) and (1, 1). D(0, 0) = D(3, 0) = D(0, 3) = −9 < 0 so<br />

(0, 0), (3, 0),and(0, 3) are saddle points. D(1, 1) = 3 > 0 and<br />

f xx (1, 1) = −2 < 0,sof(1, 1) = 1 is a local maximum.<br />

55. First solve inside D. Heref x =4y 2 − 2xy 2 − y 3 , f y =8xy − 2x 2 y − 3xy 2 .<br />

Then f x =0implies y =0or y =4− 2x,buty =0isn’t inside D. Substituting<br />

y =4− 2x into f y =0implies x =0, x =2or x =1,butx =0isn’t inside D,<br />

and when x =2, y =0but (2, 0) isn’t inside D. Thus the only critical point inside<br />

D is (1, 2) and f(1, 2) = 4. Secondly we consider the boundary of D.<br />

On L 1 : f(x, 0) = 0 and so f =0on L 1 .OnL 2 : x = −y +6and

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!