30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

214 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14<br />

TX.10<br />

7.<br />

9. f is a rational function, so it is continuous on its domain. Since f is defined at (1, 1), we use direct substitution to evaluate the<br />

limit:<br />

lim<br />

(x,y)→(1,1)<br />

2xy<br />

x 2 +2y 2 = 2(1)(1)<br />

1 2 +2(1) 2 = 2 3 .<br />

T (6 + h, 4) − T (6, 4)<br />

11. (a) T x (6, 4) = lim<br />

, so we can approximate T x (6, 4) by considering h = ±2 and<br />

h→0 h<br />

using the values given in the table: T x (6, 4) ≈<br />

T x(6, 4) ≈<br />

T (4, 4) − T (6, 4)<br />

−2<br />

=<br />

72 − 80<br />

−2<br />

T (8, 4) − T (6, 4)<br />

2<br />

=<br />

86 − 80<br />

2<br />

=3,<br />

=4. Averaging these values, we estimate T x(6, 4) to be approximately<br />

3.5 ◦ T (6, 4+h) − T (6, 4)<br />

C/m. Similarly, T y (6, 4) = lim<br />

, which we can approximate with h = ±2:<br />

h→0 h<br />

T y (6, 4) ≈<br />

T (6, 6) − T (6, 4)<br />

2<br />

=<br />

75 − 80<br />

2<br />

= −2.5, T y (6, 4) ≈<br />

values, we estimate T y (6, 4) to be approximately −3.0 ◦ C/m.<br />

<br />

(b) Here u =<br />

√<br />

1<br />

2<br />

,<br />

T (6, 2) − T (6, 4)<br />

−2<br />

=<br />

87 − 80<br />

−2<br />

= −3.5. Averagingthese<br />

√<br />

1<br />

2<br />

, so by Equation 15.6.9 [ ET 14.6.9], D u T (6, 4) = ∇T (6, 4) · u = T x(6, 4) √ 1<br />

2<br />

+ T y(6, 4) √ 1 2<br />

.<br />

Using our estimates from part (a), we have D u T (6, 4) ≈ (3.5) √ 1<br />

2<br />

+(−3.0) √ 1<br />

2<br />

= 1<br />

2 √ ≈ 0.35. This means that as we<br />

2<br />

move through the point (6, 4) in the direction of u, the temperature increases at a rate of approximately 0.35 ◦ C/m.<br />

<br />

<br />

T 6+h √ 1<br />

2<br />

, 4+h √ 1<br />

2<br />

− T (6, 4)<br />

Alternatively, we can use Definition 15.6.2 [ ET 14.6.2]: D u T (6, 4) = lim<br />

,<br />

h→0 h<br />

which we can estimate with h = ±2 √ 2.ThenD u T (6, 4) ≈<br />

D u T (6, 4) ≈<br />

(c) T xy(x, y) = ∂ ∂y<br />

T (4, 2) − T (6, 4)<br />

−2 √ 2<br />

=<br />

[Tx(x, y)] = lim<br />

h→0<br />

T (8, 6) − T (6, 4)<br />

2 √ 2<br />

=<br />

80 − 80<br />

2 √ 2<br />

=0,<br />

74 − 80<br />

−2 √ 2 = 3 √<br />

2<br />

. Averaging these values, we have D u T (6, 4) ≈ 3<br />

2 √ 2 ≈ 1.1◦ C/m.<br />

T x(x, y + h) − T x(x, y)<br />

T x(6, 4+h) − T x(6, 4)<br />

,soT xy(6, 4) = lim<br />

which we can<br />

h<br />

h→0 h<br />

estimate with h = ±2. WehaveT x(6, 4) ≈ 3.5 from part (a), but we will also need values for T x(6, 6) and T x(6, 2). Ifwe<br />

use h = ±2 and the values given in the table, we have<br />

T x(6, 6) ≈<br />

T (8, 6) − T (6, 6)<br />

2<br />

=<br />

80 − 75<br />

2<br />

=2.5, T x(6, 6) ≈<br />

Averaging these values, we estimate T x(6, 6) ≈ 3.0. Similarly,<br />

T (4, 6) − T (6, 6)<br />

−2<br />

=<br />

68 − 75<br />

−2<br />

=3.5.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!