30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

210 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14<br />

TX.10<br />

λ = yz<br />

2x = xz<br />

2y<br />

⇒ x 2 = y 2 [since z 6= 0] ⇒ x = y and λ = yz<br />

2x = xy<br />

2z<br />

⇒ x = z [since y 6= 0].<br />

Substituting into the constraint equation gives x 2 + x 2 + x 2 = L 2 ⇒ x 2 = L 2 /3 ⇒ x = L/ √ 3=y = z and the<br />

maximum volume is L/ √ 3 3<br />

= L 3 / 3 √ 3 .<br />

41. We need to find the extreme values of f(x, y, z) =x 2 + y 2 + z 2 subject to the two constraints g(x, y, z) =x + y +2z =2<br />

and h(x, y, z) =x 2 + y 2 − z =0.<br />

∇f = h2x, 2y, 2zi, λ∇g = hλ, λ, 2λi and μ∇h = h2μx, 2μy, −μi. Thusweneed<br />

2x = λ +2μx (1), 2y = λ +2μy (2), 2z =2λ − μ (3), x + y +2z =2 (4),andx 2 + y 2 − z =0 (5).<br />

From (1) and (2), 2(x − y) =2μ(x − y),soifx 6=y, μ =1. Putting this in (3) gives 2z =2λ − 1 or λ = z + 1 , but putting<br />

2<br />

μ =1into (1) says λ =0. Hence z + 1 2 =0or z = − 1 2 .Then(4) and (5) become x + y − 3=0and x2 + y 2 + 1 2 =0.The<br />

last equation cannot be true, so this case gives no solution. So we must have x = y. Then(4) and (5) become 2x +2z =2and<br />

2x 2 − z =0which imply z =1− x and z =2x 2 .Thus2x 2 =1− x or 2x 2 + x − 1=(2x − 1)(x +1)=0so x = 1 or 2<br />

x = −1. The two points to check are 1<br />

, 1 , 1<br />

2 2 2 and (−1, −1, 2): f 1 , 1 , 1<br />

2 2 2 =<br />

3<br />

and f(−1, −1, 2) = 6. Thus 1<br />

, 1 , 1<br />

4 2 2 2 is<br />

the point on the ellipse nearest the origin and (−1, −1, 2) is the one farthest from the origin.<br />

43. f(x, y, z) =ye x−z , g(x, y, z) =9x 2 +4y 2 +36z 2 =36, h(x, y, z) =xy + yz =1. ∇f = λ∇g + μ∇h ⇒<br />

ye x−z ,e x−z , −ye x−z = λh18x, 8y, 72zi + μhy, x + z, yi, soye x−z =18λx + μy, e x−z =8λy + μ(x + z),<br />

−ye x−z =72λz + μy, 9x 2 +4y 2 +36z 2 =36, xy + yz =1. Using a CAS to solve these 5 equations simultaneously for x,<br />

y, z, λ,andμ (in Maple, use the allvalues command), we get 4 real-valued solutions:<br />

x ≈ 0.222444, y ≈−2.157012, z ≈−0.686049, λ ≈−0.200401, μ ≈ 2.108584<br />

x ≈−1.951921, y ≈−0.545867, z ≈ 0.119973, λ ≈ 0.003141, μ ≈−0.076238<br />

x ≈ 0.155142, y ≈ 0.904622, z ≈ 0.950293, λ ≈−0.012447, μ ≈ 0.489938<br />

x ≈ 1.138731, y ≈ 1.768057, z ≈−0.573138, λ ≈ 0.317141, μ ≈ 1.862675<br />

Substituting these values into f gives f(0.222444, −2.157012, −0.686049) ≈−5.3506,<br />

f(−1.951921, −0.545867, 0.119973) ≈−0.0688, f(0.155142, 0.904622, 0.950293) ≈ 0.4084,<br />

f(1.138731, 1.768057, −0.573138) ≈ 9.7938. Thus the maximum is approximately 9.7938, and the mininum is<br />

approximately −5.3506.<br />

45. (a) We wish to maximize f(x 1,x 2, ..., x n)= n√ x 1x 2 ···x n subject to g(x 1,x 2, ..., x n)=x 1 + x 2 + ···+ x n = c<br />

and x i > 0.<br />

<br />

<br />

1<br />

∇f = (x n 1x 2 ···x n ) n 1 −1 (x 2 ···x n ) , 1 (x n 1x 2 ···x n ) n 1 −1 (x 1 x 3 ···x n ) , ..., 1 (x n 1x 2 ···x n ) n 1 −1 (x 1 ···x n−1 )<br />

and λ∇g = hλ, λ, ..., λi, so we need to solve the system of equations<br />

1<br />

(x n 1x 2 ···x n ) n 1 −1 (x 2 ···x n )=λ ⇒ x 1/n<br />

1 x 1/n<br />

2 ···x 1/n<br />

n = nλx 1<br />

1<br />

n (x1x2 ···xn) n 1 −1 (x 1x 3 ···x n)=λ ⇒ x 1/n<br />

1 x 1/n<br />

2 ···x 1/n<br />

n = nλx 2<br />

1<br />

n (x1x2 ···xn) n 1 −1 (x 1 ···x n−1) =λ ⇒ x 1/n<br />

1 x 1/n<br />

2 ···x 1/n<br />

n = nλx n<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!