30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.<br />

TX.10<br />

SECTION 15.8 LAGRANGE MULTIPLIERS ET SECTION 14.8 ¤ 209<br />

25. Let the sides of the rectangle be x and y. Thenf(x, y) =xy, g(x, y) =2x +2y = p ⇒ ∇f(x, y) =hy, xi,<br />

λ∇g = h2λ, 2λi. Thenλ = 1 2 y = 1 2 x implies x = y and the rectangle with maximum area is a square with side length 1 4 p.<br />

27. Let f(x, y, z) =d 2 =(x − 2) 2 +(y − 1) 2 +(z +1) 2 , then we want to minimize f subject to the constraint<br />

g(x, y, z) =x + y − z =1. ∇f = λ∇g ⇒ h2(x − 2), 2(y − 1), 2(z +1)i = λ h1, 1, −1i, sox =(λ +4)/2,<br />

y =(λ +2)/2, z = −(λ +2)/2. Substituting into the constraint equation gives λ +4<br />

2<br />

+ λ +2<br />

2<br />

+ λ +2<br />

2<br />

=1 ⇒<br />

3λ +8=2 ⇒ λ = −2,sox =1, y =0,andz =0. This must correspond to a minimum, so the shortest distance is<br />

d = (1 − 2) 2 +(0− 1) 2 +(0+1) 2 = √ 3.<br />

29. Let f(x, y, z) =d 2 =(x − 4) 2 +(y − 2) 2 + z 2 . Then we want to minimize f subject to the constraint<br />

g (x, y, z) =x 2 + y 2 − z 2 =0. ∇f = λ∇g ⇒ h2(x − 4) , 2(y − 2) , 2zi = h2λx, 2λy, −2λzi,sox − 4=λx,<br />

y − 2=λy,andz = −λz. From the last equation we have z + λz =0 ⇒ z (1 + λ) =0,soeitherz =0or λ = −1.<br />

But from the constraint equation we have z =0 ⇒ x 2 + y 2 =0 ⇒ x = y =0which is not possible from the first two<br />

equations. So λ = −1 and x − 4=λx ⇒ x =2, y − 2=λy ⇒ y =1,andx 2 + y 2 − z 2 =0 ⇒<br />

4+1− z 2 =0 ⇒ z = ± √ 5. This must correspond to a minimum, so the points on the cone closest to (4, 2, 0)<br />

are 2, 1, ± √ 5 .<br />

31. f(x, y, z) =xyz, g(x, y, z) =x + y + z =100 ⇒ ∇f = hyz, xz, xyi = λ∇g = hλ, λ, λi. Thenλ = yz = xz = xy<br />

implies x = y = z = 100<br />

3 .<br />

33. If the dimensions are 2x, 2y, and2z, thenmaximizef(x, y, z) =(2x)(2y)(2z) =8xyz subject to<br />

g(x, y, z) =x 2 + y 2 + z 2 = r 2 (x>0, y>0, z>0). Then ∇f = λ∇g ⇒ h8yz, 8xz, 8xyi = λ h2x, 2y, 2zi ⇒<br />

8yz =2λx, 8xz =2λy,and8xy =2λz,soλ = 4yz<br />

x<br />

= 4xz<br />

y<br />

= 4xy<br />

z .Thisgivesx2 z = y 2 z ⇒ x 2 = y 2 (since z 6= 0)<br />

and xy 2 = xz 2 ⇒ z 2 = y 2 ,sox 2 = y 2 = z 2 ⇒ x = y = z, and substituting into the constraint<br />

equation gives 3x 2 = r 2 ⇒ x = r/ √ 3=y = z. Thus the largest volume of such a box is<br />

<br />

r<br />

f √<br />

r<br />

3<br />

, √<br />

r<br />

3<br />

, √<br />

r<br />

3<br />

=8 √ √<br />

r<br />

√<br />

r<br />

3 3 3<br />

= 8<br />

3 √ 3 r3 .<br />

35. f(x, y, z) =xyz, g(x, y, z) =x +2y +3z =6 ⇒ ∇f = hyz, xz, xyi = λ∇g = hλ, 2λ, 3λi.<br />

Then λ = yz = 1 xz = 1 xy implies x =2y, z = 2 y.But2y +2y +2y =6so y =1, x =2, z = 2 and the volume<br />

2 3 3 3<br />

is V = 4 3 .<br />

37. f(x, y, z) =xyz, g(x, y, z) =4(x + y + z) =c ⇒ ∇f = hyz, xz, xyi, λ∇g = h4λ, 4λ, 4λi. Thus<br />

4λ = yz = xz = xy or x = y = z = 1 c are the dimensions giving the maximum volume.<br />

12<br />

39. If the dimensions of the box are given by x, y, andz, thenweneedtofind the maximum value of f(x, y, z) =xyz<br />

[x, y, z > 0] subject to the constraint L = x 2 + y 2 + z 2 or g(x, y, z) =x 2 + y 2 + z 2 = L 2 . ∇f = λ∇g ⇒<br />

hyz, xz, xyi = λh2x, 2y, 2zi,soyz =2λx ⇒ λ = yz<br />

xz<br />

xy<br />

, xz =2λy ⇒ λ = ,andxy =2λz ⇒ λ =<br />

2x 2y 2z . Thus

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!