30.04.2015 Views

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

Solução_Calculo_Stewart_6e

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.<br />

206 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14<br />

TX.10<br />

53. Let x, y, z be the dimensions of the rectangular box. Then the volume of the box is xyz and<br />

L = x 2 + y 2 + z 2 ⇒ L 2 = x 2 + y 2 + z 2 ⇒ z = L 2 − x 2 − y 2 .<br />

Substituting, we have volume V (x, y) =xy L 2 − x 2 − y 2 , (x, y > 0).<br />

V x = xy · 1<br />

2 (L2 − x 2 − y 2 ) −1/2 (−2x)+y L 2 − x 2 − y 2 = y x 2 y<br />

L 2 − x 2 − y 2 − <br />

L2 − x 2 − y ,<br />

2<br />

V y = x L 2 − x 2 − y 2 −<br />

xy 2<br />

<br />

L2 − x 2 − y 2 . V x =0implies y(L 2 − x 2 − y 2 )=x 2 y ⇒ y(L 2 − 2x 2 − y 2 )=0 ⇒<br />

2x 2 + y 2 = L 2 (since y>0), and V y =0implies x(L 2 − x 2 − y 2 )=xy 2 ⇒ x(L 2 − x 2 − 2y 2 )=0 ⇒<br />

x 2 +2y 2 = L 2 (since x>0). Substituting y 2 = L 2 − 2x 2 into x 2 +2y 2 = L 2 gives x 2 +2L 2 − 4x 2 = L 2 ⇒<br />

3x 2 = L 2 ⇒ x = L/ √ <br />

3 (since x>0)andtheny = L 2 − 2 L/ √ 3 2 √<br />

= L/ 3. So the only critical point is<br />

L/<br />

√<br />

3,L/<br />

√<br />

3<br />

which, from the geometrical nature of the problem, must give an absolute maximum. Thus the maximum<br />

volume is V L/ √ 3,L/ √ 3 = L/ √ 3 2 L 2 − L/ √ 3 2<br />

−<br />

<br />

L/<br />

√<br />

3<br />

2<br />

= L 3 / 3 √ 3 cubic units.<br />

<br />

55. Note that here the variables are m and b,andf(m, b) = n [y i − (mx i + b)] 2 <br />

.Thenf m = n −2x i [y i − (mx i + b)] = 0<br />

implies<br />

n <br />

xi y i − mx 2 i − bx i =0or<br />

i =1<br />

n <br />

y i = m n x i +<br />

i =1<br />

Now f mm =<br />

i =1<br />

n <br />

i =1<br />

n <br />

i =1<br />

2x 2 i , f bb =<br />

i =1<br />

n <br />

x i y i = m n x 2 <br />

i + b n x i and f b =<br />

i =1<br />

i =1<br />

i =1<br />

n <br />

i =1<br />

n<br />

<br />

<br />

b = m x i + nb. Thus we have the two desired equations.<br />

i =1<br />

n <br />

i =1<br />

n<br />

<br />

<br />

D(m, b) =4n x 2 n<br />

i − 4<br />

i =1<br />

equations do indeed minimize<br />

i =1<br />

n <br />

i =1<br />

i =1<br />

<br />

2=2n and f mb = n 2x i. And f mm(m, b) > 0 always and<br />

2 <br />

n<br />

x i =4 n<br />

d 2 i .<br />

i =1<br />

x 2 i<br />

i =1<br />

<br />

−<br />

−2[y i − (mx i + b)] = 0 implies<br />

<br />

n<br />

2<br />

x i > 0 always so the solutions of these two<br />

i =1<br />

15.8 Lagrange Multipliers ET 14.8<br />

1. At the extreme values of f, the level curves of f just touch the curve g(x, y) =8with a common tangent line. (See Figure 1<br />

and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve<br />

f(x, y) =c with the largest value of c which still intersects the curve g(x, y) =8is approximately c =59, and the smallest<br />

value of c corresponding to a level curve which intersects g(x, y) =8appears to be c =30.Thusweestimatethemaximum<br />

value of f subject to the constraint g(x, y) =8to be about 59 and the minimum to be 30.<br />

3. f(x, y) =x 2 + y 2 , g(x, y) =xy =1,and∇f = λ∇g ⇒ h2x, 2yi = hλy, λxi,so2x = λy, 2y = λx, andxy =1.<br />

From the last equation, x 6= 0and y 6= 0,so2x = λy ⇒ λ =2x/y. Substituting, we have 2y =(2x/y) x ⇒<br />

y 2 = x 2 ⇒ y = ±x. Butxy =1,sox = y = ±1 and the possible points for the extreme values of f are (1, 1) and<br />

(−1, −1). Here there is no maximum value, since the constraint xy =1allows x or y to become arbitrarily large, and hence<br />

f(x, y) =x 2 + y 2 canbemadearbitrarilylarge.Theminimumvalueisf(1, 1) = f(−1, −1) = 2.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!